3D Gaze Estimation from 2D Pupil Positions on Monocular Head-Mounted Eye Trackers



3D gaze information is important for scene-centric attention analysis, but accurate estimation and analysis of 3D gaze in real-world environments remains challenging. We present a novel 3D gaze estimation method for monocular head-mounted eye trackers. In contrast to previous work, our method does not aim to infer 3D eye- ball poses, but directly maps 2D pupil positions to 3D gaze directions in scene camera coordinate space. We first provide a detailed discussion of the 3D gaze estimation task and summarize different methods, including our own. We then evaluate the performance of different 3D gaze estimation approaches using both simulated and real data. Through experimental validation, we demonstrate the effectiveness of our method in reducing parallax error, and we identify research challenges for the design of 3D calibration procedures.

A Tutorial on Human Activity Recognition Using Body-worn Inertial Sensors



The last 20 years have seen an ever increasing research activity in the field of human activity recognition. With activity recognition having considerably matured so did the number of challenges in designing, implementing and evaluating activity recognition systems. This tutorial aims to provide a comprehensive hands-on introduction for newcomers to the field of human activity recognition. It specifically focuses on activity recognition using on-body inertial sensors. We first discuss the key research challenges that human activity recognition shares with general pattern recognition and identify those challenges that are specific to human activity recognition. We then describe the concept of an activity recognition chain (ARC) as a general-purpose framework for designing and evaluating activity recognition systems. We detail each component of the framework, provide references to related research and introduce the best practise methods developed by the activity recognition research community. We conclude with the educational example problem of recognising different hand gestures from inertial sensors attached to the upper and lower arm. We illustrate how each component of this framework can be implemented for this specific activity recognition problem and demonstrate how different implementations compare and how they impact overall recognition performance.

EyeTab: Model-based gaze estimation on unmodified tablet computers



Despite the widespread use of mobile phones and tablets, hand-held portable devices have only recently been identified as a promising platform for gaze-aware applications. Estimating gaze on portable devices is challenging given their limited computational resources, low quality integrated front-facing RGB cameras, and small screens to which gaze is mapped. In this paper we present EyeTab, a model-based approach for binocular gaze estimation that runs entirely on an unmodified tablet. EyeTab builds on set of established image processing and computer vision algorithms and adapts them for robust and near-realtime gaze estimation. A technical prototype evaluation with eight participants in a normal indoors office setting shows that EyeTab achieves an average gaze estimation accuracy of 6.88° of visual angle at 12 frames per second.