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ABSTRACT
In this work we investigate the challenging task of predicting user
intents from mouse and keyboard input as well as gaze behaviour.
Different from prior work, we study intent prediction at two differ-
ent resolutions on the behavioural timeline: predicting future input
actions as well as latent intents to achieve a high-level interaction
goal. Results from a user study (N=15) on a sample text formatting
task show that the sequence of prior actions is more informative for
intent prediction than gaze. Using only the action sequence, we can
predict the next action and the high-level intent with an accuracy
of 66% and 96%, respectively. In contrast, accuracy when using fea-
tures extracted from gaze behaviour was significantly lower, at 41%
and 46%. This finding is important for the development of future
anticipatory user interfaces that aim to proactively adapt to user
intents and interaction goals.
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1 INTRODUCTION AND RELATEDWORK
Inspired by research in human-human interaction [3, 14], predicting
users’ intents and anticipating their future actions has the potential
to enable a new generation of adaptive user interfaces (UIs) that
support users in their everyday tasks. However, most current UIs
are reactive, i.e. they only react upon receiving explicit user input.
There is a growing interest in human-computer interaction (HCI)
to develop computational methods to automatically predict users’
intents based on their interactive behaviour that can be integrated
into anticipatory IUIs, i.e. interfaces that are proactive. Intent recog-
nition is challenging given that intents are not directly observable
and manifest only once the user commits to and starts perform-
ing the sequence of actions towards a certain task-related goal. A
number of prior works have instead focused on predicting users’
next action, such as the next mouse location [8, 12, 17], source code
edits [24], button presses [4], or selection of items in virtual reality
(VR) [7, 9]. Other works predicted high-level intents while playing
games [15, 16, 21] or when purchasing items after browsing an
online shopping catalogue [1]. However, only few works studied
different behavioural resolutions, i.e. individual actions vs. action
sequences. For example, Loyola et al. [13] predicted the next se-
lected item as well as the latent purchasing intent as a consequence
of browsing multiple items in online shopping.

We fill this gap by proposing an intent prediction approach using
action sequences generated from mouse and keyboard input as well
as gaze dynamics. Mouse and keyboard are particularly attractive
for intent prediction given that they are readily available on a large
number of devices and are typically used frequently and over longer
periods of time. From mouse input, Fu et al. [8] and Kwok et al. [12]
predicted users’ specific next action like annotating and clicking a
button with an accuracy between 65% and 76%. Ottley et al. [17]
used a hidden Markov model (HMM) to predict mouse interactions
in a visual analysis task with an accuracy ranging from 92% to 97%.
Agrawal et al. [1] predicted user intent to purchase an item from
both mouse and keyboard input using a long short-term memory

https://orcid.org/0000-0001-5462-8782
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en


Computational UI@CHI ’22, May 01, 2022, New Orleans, LA Zhang et al.

Figure 1: Sample screenshot from the text formatting task including a rule set that participants had to implement in one trial.
The text marked in red had to be formatted according to the formatting rules for titles (e.g. bold and size big), the text in blue
according to the rules for subtitles and, finally, the remaining text according to the rules paragraphs.

(LSTM) neural network and achieved an accuracy of 89%. Gaze
was also shown to be indicative of user intent: Bednarik et al. [4]
predicted whether users pressed a button in a puzzle. Gomez et
al. [9] predicted users’ selection from three items in VR using LSTM
and achieved an accuracy of 80%. Similarly, David-John et al. [7]
used logistic regression to predict the intent to select an item in
VR. Despite this link, multimodal prediction using gaze remains
under-explored. Singh et al. [21] predicted player intent in a board
game using models based on Bayes’ rule and showed that including
gaze was more beneficial over using only actions. Soleymani et
al. [23] predicted three visual search intents with random forest
classifier from multimodal input, such as gaze, implicit user inter-
actions (mouse and keyboard actions included), facial expressions
and galvanic skin response. They found that implicit user inter-
actions were the most informative from the individual modalities,
outperformed only by the late fusion of all modalities.

To analyse if and how mouse and keyboard input as well as gaze
dynamics contribute to intent prediction, we picked a text format-
ting task which, along with text entry and editing, is pervasive and
has very high practical relevance in UIs. A large body of research
has focused on predictive text entry [2, 5]. However, there are cur-
rently no works which predict user formatting intents, which is
complementary to text prediction and more independent from the
text’s semantics. In this work, we are first to study intent prediction
at two different resolutions on the behavioural timeline in a text
formatting task. Besides predicting the specific action users will
perform next, our method can also predict the higher-level goal
achieved by a sequence of actions, noted as the overall latent intent.

2 USER STUDY
We conducted a data collection study in which participants applied
different formatting rules to a given piece of randomly generated
text. The text consisted of titles, subtitles and paragraphs, which

were marked in three different colours (see Figure 1). In our study,
we refer to applying a formatting action (i.e., one out of seven: bold,
italic, underline, text size, font family, alignment or indentation)
to the selected text as a user action. Similarly, a formatting rule
is the user’s underlying latent intent, made of three subrules to
three parts of the text. For the full list of seven formatting rules see
Appendix A.

The study was designed to have two parts, one covering a prede-
fined, fixed set of formatting rules, and one that allowed participants
to create their own custom rules. When applying a specific format-
ting action, the user was free to either click on the toolbar in the
UI (e.g. click on B to mark in bold) or use keyboard shortcuts (e.g.
CTRL+B for bold). In the first part, participants were given five
repetitions of seven predefined formatting rules, resulting in 35
trials. By including each action in at least three rules, we ensured
that the similarity between rules was comparable. In the second
part, each participant created one rule, then applied the custom
rule to the text freely, and hence created a custom number of titles,
subtitles and paragraphs. This was repeated five times for a total of
five trials. Before each part, participants performed two test trials
to familiarise themselves with the task.

To recreate a realistically looking UI, we built a text editor front-
end based on CKEditor51 (see Figure 1). We recorded mouse and
keyboard events, as well as clicks on the toolbar and text selections.
Gaze data was collected with the Tobii TX300 eye tracker via its
Python SDK2. Participants were seated 76 cm away from a Dell
U3014 display with a resolution of 2560×1600 pixels. Since the study
setup did not involve a chin rest, we asked participants to restrict
their head movements. 16 participants (13 male, 3 female), aged
between 23 and 30 years old (M=25.25; SD=1.73), were recruited
from an internal university self-volunteer pool. Gaze data was

1https://ckeditor.com/ckeditor-5/
2https://github.com/tobiipro/prosdk-addons-python

https://ckeditor.com/ckeditor-5/
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Figure 2: Method overview.

missing for one of the participants, hence, we used 15 participants
in the following analyses.

3 METHOD
Our method has two main components (Figure 2). The first com-
ponent predicts intent based on prior action sequences, i.e. the
formatting history, extracted from mouse and keyboard logs. The
second component uses gaze features extracted from a time window
centred around actions to predict the same user intent. The two
classifiers are trained independently and output a probability distri-
bution over the possible user intents. A late fusion (decision-level
fusion) module produces the final classification results by calculat-
ing a weighted average between the prediction probabilities of the
two classifiers.

We first manually inspected and preprocessed the gaze data. Our
method uses 1 s windows of gaze data centred around formatting
actions. To denoise and smooth the gaze data, we applied a median
filter over a window of seven gaze samples, similar to prior work [7,
19]. Then, we extracted a total of 124 gaze features from each 1 s
window, covering the raw gaze data, fixations, and saccades. We
used the Dispersion Threshold Identification (I-DT) algorithm [20]
to detect fixations. Dispersion is the maximum distance between
two consecutive gaze samples. We set the dispersion threshold to
50 pixels (≈ 1◦) and the duration threshold to 100 ms. Saccades
were detected using the Velocity Threshold Identification (I-VT)
algorithm [20] when the inter-sample velocity exceeded 500 pixels/s
(≈ 10◦/𝑠) or the acceleration reached 500 pixels/s2 (≈ 10◦/𝑠2), and
the duration was between 20 and 200 ms. For both I-DT and I-VT
we used the implementation from PyGazeAnalyser [6]. Features
were normalised to zero mean and unit variance. We trained a linear
logistic regression model on the training set to assign weights to
features and then selected the top 20% features using recursive
feature elimination.

Following prior work on intent recognition [23], we opted for
random forest classifiers. Two classifiers were trained separately on
the two input modalities and generated the final prediction using
late fusion. The label with the maximum weighted average output
probability of both classifiers was used as the final prediction. We
optimised the weight for maximum performance on the training set
using a parameter search in the range [0.1, 0.9] with a step size of 0.1.
In addition, for both models we optimised their key parameters, i.e.

the number of trees per forest [10, 50, 100] and the maximum depth
of the trees [10, 20, 30]. The standard scaler, logistic regression,
recursive feature elimination, parameter grid search, and random
forest classifier were implemented using Scikit-learn [18].

We compared the performance of our method with two baselines
inspired by prior research. The Classifier Baseline was inspired
by Singh et al. [22], in which the authors proposed an inference
model based on Bayes’ rule to estimate the probability of each
intent according to the user’s prior action sequences in a board
game. However, their model was built on each user’s own action
history and was hence personalised to each specific user. Addi-
tionally, multiple optimal action sequences could lead to the same
latent intent in their task but, in ours, given one formatting intent,
the optimal action sequence is exclusive regardless of the order of
actions. Therefore, we implemented this baseline using two sepa-
rate Naive Bayes classifiers to predict user intent, Gaussian Naive
Bayes from gaze (continuous values) and Multinomial Naive Bayes
from past actions (discrete values). The final predictions were also
obtained via weighted late fusion. Gaze Feature Baseline used
the same downsampling method and gaze feature set as [7] which
predicted user intents in a fundamentally different task using only
gaze. Their task was to predict if a user intends to select an item
by clicking the VR hand controller. Note that this baseline used
a different feature set for gaze data. For classification, we used a
random forest classifier. Therefore, this baseline only influences the
component for gaze and shares the same component and results
for action sequences with our method.

4 EXPERIMENTS
A leave-one-participant-out cross-validation was applied to better
illustrate generalisability and real-world performance. N models
were trained on the data from N-1 participants and tested on the re-
maining one. The evaluation metric for the multi-class classification
problem is the averaged accuracy across iterations. We compare the
performance with ablated versions of our method, i.e. using either
action sequences or gaze only, on two different resolutions of the
behavioural timeline. All evaluations were carried out on the data
collected in the first part of our study in which the formatting rules
were predefined. We generated each train/test sample following a
windowing approach: a 125-dimensional vector (124 gaze features +
1 action) was produced from 7 prior actions and 7 corresponding 1 s
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Table 1: Top-1, top-2 and top-3 accuracy for predicting the next formatting action using the sequence of actions (A), gaze (G)
and their fusion (AG) on given formatting rule sets. Best results in each modality are underlined. Among them, the best results
across modalities are marked in bold.

Approach Top-1 Top-2 Top-3

A G AG A G AG A G AG

Classifier Baseline 0.35 0.26 0.36 0.49 0.44 0.50 0.63 0.59 0.63
Gaze Feature Baseline – 0.29 0.65 – 0.46 0.82 – 0.60 0.91
Ours 0.66 0.41 0.65 0.86 0.60 0.83 0.95 0.71 0.92

gaze windows centred around each action. Due to the gaze window,
our method needs to wait for an extra 500ms after each action to
collect gaze behaviours, so it might miss actions that appear during
this time. In Figure 2, our method uses an example window of size
two with actions A1 and A2, meaning it will miss A3 and can only
predict A4. However, since A3 is performed nearly immediately
after A2 (less than 500ms), we argue that this is a minor limitation
and it is even unclear whether in this case, a prediction would help
users in their task. We marked such cases in as incorrect predictions
of our method, which negatively impacted the evaluation metrics.

4.1 Predicting User Intent Towards a Specific
Next Action

This task is a multi-class classification problem with seven classes
which correspond to the seven formatting actions, such as making
a word italic or left-aligning a paragraph. One practical applica-
tion could show users the future formatting action they may apply.
While recommending multiple actions may improve the UI’s friend-
liness, recommending too many actions results in a longer decision
time according to the Hick-Hyman Law [10, 11]. Therefore, besides
evaluating the performance of predicting the next action (top-1),
we also evaluated the performance of predicting the top-2 and top-3
most likely actions. Picking an action at random, i.e. a random
baseline, the top-1, top-2 and top-3 accuracies are 14%, 29% and
43%, respectively. Table 1 shows the results of our method and the
other two baselines using the action sequence only (A), gaze only
(G), and the fusion of both modalities (AG). Note that the Gaze
Feature Baseline shares the same results for actions as explained
in Section 3. We conducted a 3× 3 (approach×modalities) ANOVA
to examine the effect on prediction accuracy. Both factors have a
significant main effect for top-1, top-2 and top-3 accuracies3. Our
approach outperforms the other baselines on all inputs, achieving a
top-1 accuracy of 66%, a top-2 accuracy of 86% and a top-3 accuracy
of 95%. This difference was significant between Classifier Baseline
and our method, and between Gaze Feature Baseline and ours for
gaze features only (G) in a post-hoc Tukey HSD test. These top
accuracies were obtained on actions only (A). The post-hoc Tukey
HSD test also revealed that the ablated version of our method when
using gaze (G) achieved significantly lower accuracy: 41% for top-
1, 60% for top-2, and 71% for top-3, respectively. The fusion (AG)
decreases the top performance to 65% for top-1, 83% for top-2, and

3Specific next action: Top 1 approach 𝐹 (2, 126) = 72.87, 𝑝 < 0.01, Top 1 modality
𝐹 (2, 126) = 73.10, 𝑝 < 0.01; Top 2 approach 𝐹 (2, 126) = 115.03, 𝑝 < 0.01, Top 2
modality 𝐹 (2, 126) = 83.71, 𝑝 < 0.01; Top 3 approach 𝐹 (2, 126) = 105.83, 𝑝 < 0.01,
Top 3 modality 𝐹 (2, 126) = 78.23, 𝑝 < 0.01

Table 2: Accuracy of intent prediction achieved on actions
only (A), gaze only (G) and their fusion (AG) on given format-
ting rule sets. Best results in each modality are underlined.
Among them, the best results across modalities are marked
in bold.

Approach A G AG

Classifier Baseline 0.22 0.15 0.20
Gaze Feature Baseline – 0.23 0.82
Ours 0.96 0.46 0.80

92% for top-3. This difference between AG and A was significant in
a post-hoc Tukey HSD test. Therefore, our evaluations show that
the action sequence alone performed best for this prediction task.

4.2 Predicting Overall Latent User Intent
We predicted the overall latent intent, i.e. one of seven predefined
formatting rules (see Section 2). The chance level accuracy for this
7-class classification problem is 14%. Table 2 shows that the best ac-
curacy is achieved using our method and the action sequences only
(A) 96% vs. gaze only (G) 46% vs. the fusion of both modalities (AG)
80%. A two-way ANOVA revealed a main effect for both factors4.
Post-hoc Tukey HSD test showed that our approach significantly
outperformed the Classifier Baseline in all modalities, and the Gaze
Feature Baseline on gaze dynamics only. The best performance
of our approach was obtained when using action sequences (A)
(significant in post-hoc Tukey HSD test compared to gaze and the
fusion of both). Similarly to our previous evaluation, the action
sequences carried more information about the overall latent intent.

5 DISCUSSION
5.1 Two Resolutions of User Intent
In contrast to prior work, we investigated intent prediction at two
behavioural resolutions: user intent towards a specific next action
(applying a single formatting action) and the latent intent towards
a broader, higher-level goal (implementing the formatting rule set).
Our approach achieved similar accuracy for top-3 next action and
latent intent prediction: 95% and 96%. The latent intent in our task
is a formatting rule set, which consisted of three formats for the
title, the subtitle, and paragraphs. Additionally, top-X accuracy mea-
sured whether the performed action was within the most probable

4Latent intent: approach 𝐹 (2, 126) = 546.08, 𝑝 < 0.01, modality 𝐹 (2, 126) =

313.50, 𝑝 < 0.01
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X predictions. Hence, knowing the intent constrains the set of pos-
sible actions (aside from errors) to three formatting actions. Our
approach captured this constraint similarly well at both resolutions.

5.2 Contributions of Two Modalities in Intent
Prediction

We found that both intents can be inferred from user actions shown
in ablation studies ("A" in Table 1 and Table 2), which is in line
with findings from prior work in other scenarios [1, 8, 12, 21]. The
most likely reason why input actions contribute more is that they
are predominantly goal-oriented and sparse. That is, they are only
performed to implement an immediate or long-term intent, e.g.
moving the mouse cursor to button B and clicking it to make the
selected text bold. Additionally, they may not happen frequently,
e.g. if the hand is taken off the mouse or during typing breaks. In
stark contrast, gaze behaviour occurs all the time – whether to
support mouse and keyboard input in the form of "look-aheads" or
to explore, navigate, or search the complex visual interface. Larger
parts of gaze behaviour will therefore not be directly relevant to
the intent at hand.

5.3 Limitations and Future Work
Based on our insights, we see four fruitful areas for future work.
First, while our approach outperformed the baselines, integrating
gaze dynamics did not improve performance. This calls for further
research on how to integrate the rich information content available
in gaze for this task. Second, so far, we only analysed data collected
in the first part of the study in which participants followed prede-
fined formatting rules. We plan to investigate if and how behaviour
changed in the second part in which participants defined their own,
custom rules. Third, the user study was conducted in a controlled
laboratory setting.While this was necessary to collect accurate gaze
data, we plan to also study interactive behaviour during everyday
tasks, such as in the office. Finally, given the promising results, we
plan to build an adaptive UI using this approach that proactively
assists users based on the predicted latent intents and actions.
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