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Figure 1: This work makes three distinct contributions: 1○We propose SalChartQA – a novel large-scale dataset consisting of
more than 74,000 answers to 6,000 questions on 3,000 information visualisations and corresponding crowd-sourced human
attention data (N = 165). 2○ Analyses on SalChartQA demonstrate the strong impact of the question on visual saliency. Informed
by these findings, we propose 3○VisSalFormer: a Transformer-based model to predict question-driven saliency maps on
information visualisations.

ABSTRACT
Understanding the link between visual attention and users’ infor-
mation needs when visually exploring information visualisations
is under-explored due to a lack of large and diverse datasets to
facilitate these analyses. To fill this gap we introduce SalChartQA –
a novel crowd-sourced dataset that uses the BubbleView interface
to track user attention and a question-answering (QA) paradigm
to induce different information needs in users. SalChartQA con-
tains 74,340 answers to 6,000 questions on 3,000 visualisations.
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Informed by our analyses demonstrating the close correlation be-
tween information needs and visual saliency, we propose the first
computational method to predict question-driven saliency on visu-
alisations. Our method outperforms state-of-the-art saliency mod-
els for several metrics, such as the correlation coefficient and the
Kullback-Leibler divergence. These results show the importance
of information needs for shaping attentive behaviour and pave
the way for new applications, such as task-driven optimisation of
visualisations or explainable AI in chart question-answering.
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1 INTRODUCTION
Analysis and computational modelling of human visual attention
have emerged as key research topics in information visualisation re-
search. The analysis of where users look at – measured, for example,
using eye tracking [6] or mouse clicks as a proxy to gaze [23, 33]
– provides rich information on how users perceive, explore, and
process visualisations [48, 53]. This information is highly valuable
for designers as it allows them to optimise the design of information
visualisations for better clarity [37], memorability [6], and intelligi-
bility [24]. Computational modelling of visual attention, also known
as saliency prediction [30], is equally powerful as it enables many
intelligent visual analytics applications, such as video compres-
sion [29], semantic segmentation [32], interactive UI design [21],
and forecasting fixations in virtual reality (VR) [27, 28].

Users’ attentive behaviour is, in part, driven by characteristics of
the information visualisations themselves, such as the appearance
of different visualisation elements (colour, size, font size, andweight,
etc.) and their visual arrangements [6, 49, 65]. Complementing these
bottom-up factors, where and in which order humans look at is
also influenced by the task they are performing [53, 55], their goals
and intentions [16, 70], or – in case of information visualisations
– their information needs. For example, Figure 1- 2○ shows how
trustful social media is for political and election news. It is reason-
able to expect that a user interested in average values will look at
the visualisation differently than one interested in particular social
media outlets. While bottom-up factors and their impact on users’
attention have been widely studied in information visualisation re-
search, the top-down influence of users’ information needs remains
largely unexplored. Similarly, there is a lack of computational mod-
els to predict saliency on information visualisations for different
information needs. One reason for this is that studying different
information needs and their influence on human visual attention is
challenging: There is a wide range of needs, potential interaction
effects between concurrent needs, as well as individual differences
across users in how visual attention is deployed, specifically for
various information needs while viewing visualisations. These chal-
lenges also apply to saliency prediction for which training of robust
learning-based methods requires large amounts of ground-truth
annotated data. This work addresses these challenges in two ways,
allowing us to study the dependency between information needs
and attention and advance saliency prediction methods.

First, we propose to use a question-answering (QA) paradigm to
“induce” different information needs in users in a controlled manner.
Users are tasked to answer questions about different information
visualisations while their attention is being tracked. By varying
the type of visualisation and question, we can isolate information
needs and study the link between information needs and visual
attention in a controlled manner. As such, the questions can be
considered operational actions for different information needs. QA

has attracted significant research interests in the computer vision
and natural language processing communities in recent years [2,
60] but has only recently started to be explored in information
visualisation research, e.g., to study visual attention behaviour [23,
53], chart question answering [47, 57], and information recall [66].

Second, we introduce SalChartQA– a large-scale saliency dataset
collected using the QA paradigm. Given the difficulties in scaling
up laboratory eye tracking studies, to collect the dataset, we opt
for an online study on Amazon Mechanical Turk (AMT) using the
popular BubbleView interface to track participants’ visual attention
[33]. This approach allows us to obtain data from a larger number
of people and, as such, to cover individual differences in attention
deployment more comprehensively. It also allows us to scale up
the number of stimuli and answers in SalChartQAby an order of
magnitude compared to previous datasets [6, 23, 37, 53] (also see
Table 1 for a comparison). The size of SalChartQAhas two notable
advantages. On the first hand, it ensures the statistical power of our
analysis. On the other hand, it finally allows us to propose a new
learning-based method for question-driven saliency prediction on
information visualisations (VisSalFormer) that achieves significant
improvements over several baseline methods geared to predict
question-driven saliency or importance maps for natural images
and information visualisations.

In summary, our work makes the following three contributions:
(1) We introduce SalChartQA– a large-scale saliency dataset col-

lected online from 165 participants who provided more than
74,000 answers to 6,000 questions posed for 3,000 information
visualisations.

(2) We provide in-depth analyses on SalChartQA , including the
correlation of questions and mouse clicks, and how questions
influence human visual attention.

(3) We propose VisSalFormer – the first computational method to
predict question-driven saliency on information visualisations
that significantly outperforms several state-of-the-art methods.

2 RELATEDWORK
2.1 Computational Modelling of Visual

Attention
In the research area of human vision, computational modelling of
visual attention is a key topic and has been well-studied in the
past few decades. Existing works typically focused on modelling
visual attention on natural images [15, 22, 30, 45]. For example, Itti
et al. [30] proposed one of the earliest saliency prediction models
that combine multiscale image features, including colour, intensity,
and orientation, to predict the saliency maps of natural images.
In addition, Cheng et al. [13] predicted saliency maps for natural
images using the global contrast features of the images. The Multi-
Duration Saliency Excited Model (MD-SEM) [22] was proposed
to capture attention across multiple viewing durations, providing
insights into the temporal dynamics of visual attention. Ramanishka
et al. [54] proposed the caption-guided visual saliency, while Liu
et al. [42] and Lou et al. [45] introduced the vision transformer [20]
to saliency prediction, which all demonstrate the link between
natural language and image saliency.

Recently, given the importance of information visualisations
for communicating information effectively, researchers started to
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model human visual attention on visualisations, which is fundamen-
tally different from that on natural images [49, 56, 65] due to the
highly structured nature of the visualisations. Specifically, Matzen
et al. [49] proposed a saliency prediction model for data visualisa-
tions that combines the output of a typical saliency model designed
for natural images and the output of a text recogniser to generate
saliency maps that are specialised for data visualisations. Shin et al.
[56] focused on human visual attention on chart images and pre-
sented a convolutional neural network-based encoder-decoder ar-
chitecture to predict saliencymaps for data visualisations. Sood et al.
[61] leveraged a cognitive model of visual attention as an inductive
bias to train saliency models on both natural scenes and informa-
tion visualisations. Wang et al. [65] proposed a unified model of
saliency and scanpaths (i.e. sequences of eye fixations) for informa-
tion visualisations that first predicts multi-duration element-level
saliency maps and then samples scanpaths from the saliency maps.
However, existing visual attention models on information visualisa-
tions have only one “averaged” saliency map as ground truth, which
means they can only predict visual saliency under a “free-viewing
setting”, i.e. users could freely explore a visualisation. However, in
practice, users often have specific information needs they want to
address. For example, what is the average value for a certain time
series, or what is the minimum or maximum? Such information
needs will likely lead to different attentive behaviour and, because
of this, we explored the more challenging but practically relevant
question-driven settings [47, 53], in which users are assigned a
specific question while exploring the visualisations.

2.2 Task-driven Visual Attention
In recent years, human visual attention in task-driven settings has
been a long-lasting, challenging topic in cognitive science and com-
puter vision [51]. Borji et al. [5] and Koulieris et al. [35] both focused
on human visual attention in video games. Borji et al. predicted
saliency maps using players’ input such as 2D mouse positions
and joystick buttons. Koulieris et al. used game state variables to
predict users’ gaze positions in video games. Zheng et al. [71] pre-
dicted visual saliency on webpages under different tasks such as
information browsing and form filling using an end-to-end learning
framework. In graphical user interfaces, Xu et al. [69] proposed
a spatio-temporal model to predict visual attention under a text
editing task, while Jokinen et al. [31] modelled visual search with
a cognitive model. Bâce et al. [3] studied users’ visual attention
during everyday mobile device interaction in different applications
and usage contexts. Hu et al. [26, 27] analysed visual attention in
task-driven VR environments and used task-related features to pre-
dict users’ gaze positions. Even though task-driven visual attention
has been well-studied in other scenarios, limited work exists on
information visualisations. In this work, we fill the gap by conduct-
ing comprehensive analysis and experiments to study and predict
task- (question-) driven human visual attention on information vi-
sualisations.

2.3 Visual Attention Datasets on Information
Visualisations

Researchers have collected many datasets using eye tracking tech-
nology to study human visual attention on information visualisa-
tions since eye gaze provides rich information about visual search
and decision-making [9, 36]. Some researchers investigated visual
attention on information visualisations under free-viewing settings.
For example, Borkin et al. [6] labelled a dataset of 393 visualisations
and analysed the eye movements of 33 participants and thousands
of participant-generated text descriptions of the visualisations. Shin
et al. [56] collected a large-scale dataset that contains 10,960 visu-
alisations and 12,504 user responses using a webcam-based eye-
tracking approach. Other researchers studied task-driven visual
attention on information visualisations. Specifically, Gomez et al.
[23] collected a dataset that covers 20 information visualisations to
analyse human visual attention under visual analysis tasks. Lallé
et al. [37] collected a dataset containing 40 interactive visualisations
to predict occurrences of confusion during the interaction using
eye tracking and mouse data. Polatsek et al. [53] performed an eye-
tracking study using 30 charts to analyse human visual attention
when solving three low-level analytical questions. Lastly, Kim et al.
[33] demonstrated how mouse-contingent data approximates eye
fixations on information visualisations under a free-viewing and de-
scriptive task. However, existing task-driven eye tracking datasets
on information visualisations are limited in their sizes (usually less
than 100 stimuli) [23, 33, 37, 53], and there exists no large-scale
task- (question-) driven visual attention dataset. In this work, we fill
this gap by collecting a large-scale question-driven visual attention
dataset comprising thousands of information visualisations.

3 SalChartQA DATASET
To better understand and predict question-driven human atten-
tion on information visualisations we propose the SalChartQA – a
novel large-scale dataset consisting of more than 74,000 answers to
6,000 questions on 3,000 information visualisations together with
crowd-sourced human attention data obtained from 165 users (see
Figure 2). Visualisations and questions in our dataset are sourced
from the ChartQA dataset [47]. Table 1 shows a comparison be-
tween SalChartQA and other visualisation saliency datasets that
contain questions. Existing datasets that were collected using an
eye tracker [6, 23, 37, 53] are limited in size to tens or hundreds
of stimuli. BubbleView [33] is a demonstrated approach to collect
human visual attention from mouse clicks, used previously in other
datasets [8, 11]. We facilitate the large-scale human attention data
collection using the BubbleView [33] interface to track participants’
visual attention. Our dataset and code are publicly available at
https://doi.org/10.18419/darus-3884.

3.1 Collection of Visualisations and Questions
ChartQA-H dataset [47] is a human-annotated Chart Question An-
swering dataset, covering the three most commonly used visualisa-
tion types: bar plots, line plots, and pie charts.We randomly selected
3,000 out of 4,800 visualisations from the ChartQA-H dataset. Our
selection contains 1,958 bar plots (1,417 horizontal, 541 vertical),
672 line plots, and 370 pie charts. There were 1,197 simple charts
in our selection whose data table had exactly two columns [47]

https://doi.org/10.18419/darus-3884
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Q: What state had the biggest 
one year increase?

Q: What was the lower 
number of the red line?

multi_col_970multi_col_279

Q: In which movie the difference 
between the revenue collection 
between North America and world 
wide was minimum?

Q: Which pirates of Caribbean 
collected highest revenue in 
North America over the years?

Question Type Finding Extremum Filtering Filtering Comparison
Question length 34 38 73 94
Is Answer 
Numeric? Yes No No No

Question 
Accuracy 56.25 % 52.94 % 86.67 % 56.25 %

13935

Q2: DK is smallest segment, is it true?

Q1: Is the difference between largest 

and smallest segment greater than 
median?

Composition Composition

65 29

No No

37.50 % 85.71 %

Question Type Data Retrieval Data Retrieval, Visual Composition Composition

Figure 2: Sample saliency maps from SalChartQA including the corresponding questions at the top and four question character-
istics.

and 1,803 more complex charts. Every visualisation had two corre-
sponding human-annotated reasoning questions. There were 3,996
numerical-answer questions and 2,004 non-numerical-answer ques-
tions. We noticed 239 out of 6,000 answers (3.98%) were incorrectly
labelled in ChartQA. We corrected these cases and made them avail-
able as part of SalChartQA . Since ChartQA-H provides no question
category annotations, we manually checked 600 questions in our
selection for five well-established question categories: comparison,
computing derived value, data retrieval, finding extremum, and
filtering questions. We created a keyword list for each question
category, such as “how many” and “median” for computing derived
value questions. Then, we used these keyword lists to classify the
6,000 questions into five categories (see supplementary material for
specification of keyword lists):

(1) 1,841 comparison (CP) questions [1]. Comparison questions
are judgments about data properties, especially to compare
two data points. Example questions: “Which country has the
lesser protected areas over the years, Lithuania or Saudi Ara-
bia?”, and “How many times is France bigger than Congo?”.

(2) 1,496 computing derived value (CV) questions [55]. Partici-
pants were asked to compute a derived value of some given
data points for these questions. Example questions: “What
is the average of 2019 and 2020 blue bar?”, and “What is the
difference of value in the yield of South America and India?”.

(3) 1,920 retrieving value (RV) questions [47, 53, 55]. For these
questions, participants were asked to identify the values of
attributes for given data points. Example questions: “How
many people died from Brown coal production?”, and “How
many countries have less than 60% of people that are confi-
dent in Obama?”.

(4) 390 find extremum (FE) questions [53, 55, 66]. These ques-
tions require finding data points that have an extreme data
attribute value. Example questions: “What is the highest
channel distribution by number of dispensed prescriptions

in the U.S. in 2018?”, and “In which year the white members
were maximum?”.

(5) 285 filtering (F) questions [53, 55, 66]. Participantswere asked
to find data points satisfying several given concrete condi-
tions on data attribute values for these questions. Exam-
ple questions: “In which year the Mexican government’s
campaign against drugs traffickers is making 47 percent
progress?”, and “Which country has its value 5.97%?”.

3.2 Crowd-sourcing Study Set-up & Participants
We used the widely adopted BubbleView approach [33] for col-
lecting human attention data. Participants used mouse clicks as a
proxy to eye fixations to deblur small “bubble” regions. There were
no hold and drag operations, and once the user clicked another
location, the previous region was blurred again. In our study, the
circle surrounding each mouse click had a radius of 30 pixels (∼1.5
visual angle) [33]. We deployed our study on Amazon Mechanical
Turk (AMT), a crowd-sourcing platform to collect human attention
data and question answers on all 6,000 questions, splitting them
randomly and evenly into 300 human intelligence tasks (HITs). The
HIT layout is illustrated in Figure 3, where every question was
shown alongside a blurred visualisation, and a text input field. Each
visualisation was shown in its original size and blurred by a 40-pixel
Gaussian filter tomake any text labels unreadable. Participants were
instructed to click on as many areas of interest on the visualisation
as required to provide an answer to the question. There was no
time limit to clicking and providing an answer. Once the answer
was found, participants were asked to type the answer in the text
field and proceed to the next question. Every HIT contained 20
visualisation-question pairs, and crowd workers were not allowed
to participate in HITs that contained the same visualisations. We
implemented the procedures as a web application and integrated
it into the BubbleView interface [33]. We incorporated attention
checks in the form of mathematics tasks that randomly appeared
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Table 1: A comparison between our dataset and other visualisation saliency datasets that contain questions. Our dataset is the
first large-scale question-driven saliency dataset of information visualisations. Vis: number of visualisations, Q: number of
questions. F: filtering, FE: finding extremum, RV: retrieving value, CP: comparison, CV: computing derived value.

Datasets Vis * Q Participants Answers Collection Questions

Gomez et al. [23] 20 * 1 100 + 18 2,000 + 360 Cursor + Eye Tracker Visual Analysis
Borkin et al. [6] 393 * 1 33 6,563 Eye Tracker Description
Lallé et al. [37] 40 * 1 136 5,440 Eye Tracker Confusion

Polatsek et al. [53] 30 * 3 47 1,211 Eye Tracker F, FE, RV

SalChartQA (Ours) 3,000 * 2 165 74,360 Mouse Click F, FE, RV, CP, CV

3,000 Visualisations
6,000 Questions

300 Human Inteligence Tasks 74,340 Answers
6,000 Question-driven Saliency Maps

ChartQA SalChartQA

Figure 3: Our online study was based on 3,000 visualisations and 6,000 questions from the ChartQA dataset [47] (left). Im-
plementing the BubbleView method [33], each visualisation was blurred and participants were asked to answer the question
given at the top by clicking on different parts of the visualisation, thereby unblurring small parts of the image with each click
(middle). 300 human intelligence tasks yielded over 74,000 answers and 6,000 question-driven saliency maps (right).

once within the HIT to ensure data quality [25]. If they failed the
attention check, the study was immediately terminated. Workers
were paid $ 1.00 for completing each HIT. All results remained
pseudonymised to the experimenters.

3.3 Responses
In total, we received 5,152 HIT responses, of which 424 did not pass
the attention check.We noticed that some answers were entirely un-
related to questions in low-accuracy responses, such as answering
“No” for the question “What is the average of all the Trust Data?”. To
further improve data quality, we filtered the HIT responses with low
accuracy by a 1.5 Inter Quartile Range (IQR) [64], i.e., we discarded
1,010 HITs with a question-answering accuracy lower than 35.34%.
See supplementary material for further analysis of the discarded
HIT responses. 3,718 HITs remained after filtering, with a mean
accuracy of 80.67% (𝜎 = 16.22%), corresponding to 74,360 answers
to 6,000 questions. The mean number of answers to one question is
13.10, with a variance of 6.39 answers. The minimum number of
answers to one question is 10, which accounts for up to 97 – 98% of

the optimal performance for covering an average of 89 – 90% of eye
fixations [33]. For all 74,360 answers, the mean number of clicks is
19.20 (𝜎 = 22.09), and the mean duration between the first and the
last clicks is 17.56 s (𝜎 = 44.78 s).

4 ANALYSIS
To study the influence of information needs on attention, opera-
tionalised through the question-answering paradigm, we first per-
formed a series of analyses on the collected data.

4.1 Number of Mouse Clicks
The number of clicks performed in BubbleView was shown to serve
as a good measure of visual importance and attention [33]. In Fig-
ure 4 (top), we examined whether questions impact the click count
by grouping answers based on question length and whether the
answer is numerical. The results revealed a positive correlation
between the number of clicks and question length, as evidenced
by Spearman’s rank correlation coefficient (𝑟 = 0.244, 𝑝 < 0.001).
The number of clicks did not conform to a normal distribution,
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Figure 4: Relationship between the number of clicks and
question length (top) and the answer duration and question
length (bottom) for numerical and non-numerical answers.
Question length means the number of characters in a ques-
tion. Both the number of clicks and answer duration posi-
tively correlate to question length.

as indicated by the Kolmogorow-Smirnov normality test (𝐷 = 0.999,
𝑝 < 0.001). Consequently, we employed a Welch-Satterthwaite T-
test to assess the differences between numerical and non-numerical
questions. The result revealed a statistically significant difference,
with non-numerical questions receiving significantly fewer clicks
than numerical questions (𝑡 (53,030) = 13.072, 𝑝 < 0.001). In Figure 4
(bottom), we similarly examined the relationship between answer
duration (between the first and the last mouse click) and question
length. The answer duration positively correlated with question
length as shown by the Spearman’s rank correlation coefficient
(𝑟 = 0.303, 𝑝 < 0.001). Moreover, we observed a larger variance in
the number of clicks and answer duration when questions are longer
than ∼ 100 characters. This can be attributed to only 171 questions
having more than 100 characters.

4.2 Saliency Map Generation and Metrics
We generated the saliency maps by blurring the BubbleView click
locations with a Gaussian kernel with a sigma of 19𝑝𝑥 (∼1 visual
angle [10, 33]). We used the Shannon entropy (SE) and saliency
coverage (SC) to characterise the resulting saliency maps.

• Shannon entropy is widely used in analysing saliency maps [40,
46]. It characterises how much a saliency map differs from a
uniform distribution (all pixels with the same value) [7] by a
positive value ranging from 0 to infinity. The lower the Shannon
entropy is, the closer the saliency map to a uniform distribution.

• Saliency coverage quantifies how many pixels are activated
given a certain threshold on a grayscale map [12]. It indicates
how big the areas participants have explored. SC ranges between
0 and 1 (the higher the saliency coverage is, the larger the areas
observers explore). We used the mean threshold value of Otsu’s
thresholding algorithm [52] of all saliency maps (0.238) as the
global threshold [38] to generate binary maps. Saliency coverage
was then calculated as the percentage of activated pixels in binary
maps.

For comparing the similarity between two saliency maps, we used
Pearson’s correlation coefficient (CC) and normalised scanpath
saliency (NSS) to evaluate the similarities of saliency maps:

• Pearson’s correlation coefficient (CC) is the covariance of
two maps divided by the product of their standard deviations.
The CC score is -1 when the two maps are complementary and 1
when they are identical.

• Normalized scanpath saliency (NSS) measures the saliency
values at fixation locations (clicks) along a participant’s scanpath.
A positive NSS indicates map correspondence, chance at NSS = 0,
and a negative NSS indicates anti-correspondence [10].

4.3 Saliency Similarity within Participants
We analysed participants’ visual behaviour variances to ensure that
participants who answered questions correctly had consistent vi-
sual behaviour according to their information needs. We randomly
and evenly split all participants who answered a question correctly
into two groups. We generated a saliency map for every group
and computed the similarity between the two maps. 1,612 ques-
tions were evaluated, with a minimum of four participants who an-
swered correctly and four wrongly. The mean NSS between correct-
answer saliency maps was 2.182 (𝜎 = 0.949), which was signifi-
cantly higher than between wrong-answer saliency maps (𝜇 = 1.491,
𝜎 = 0.905), paired-sample T-test, 𝑡 (1,611) = 27.104, 𝑝 < 0.001. The
mean CC between split correct-answer saliency maps was 0.760
(𝜎 = 0.145), which was significantly higher than between wrong-
answer saliency maps (𝜇 = 0.549, 𝜎 = 0.232), paired-sample T-test,
𝑡 (1,611) = 34.514, 𝑝 < 0.001). Therefore, the high and stable NSS and
CC of correct-answer saliencymaps indicated consistent participant
viewing behaviour.

4.4 Visualisation and Saliency
We investigated the question of whether visualisation character-
istics influence question-driven saliency. When comparing mean
Shannon entropies between simple charts and complex charts, we
found that simple charts had a significantly lower entropy of 3.818
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(𝜎 = 1.347) compared to complex charts (𝜇 = 4.845, 𝜎 = 1.231), Welch-
Satterthwaite T-test, 𝑡 (4,803) = 29.919, 𝑝 < 0.001). We used the mean
number of areas of interest (AOIs) to measure the complexity of
each visualisation following prior work [4],. Based on annotations
provided by ChartQA, we found visualisations had a mean of 26.05
AOIs (𝜎 = 19.12). Using correlation analysis between the number
of AOI and the Shannon Entropy for every visualisation we found
a significant positive correlation, as supported by Spearman’s rank
correlation coefficient (𝑟 = 0.063, 𝑝 < 0.001). Then, we analysed
whether the visualisation types influence the Shannon entropy (SE)
and saliency coverage (SC). Pie charts, line plots, vertical bars, and
horizontal bars have a mean SC of 15.2%, 13.1%, 11.4%, and 7.6%,
respectively. The observed differences in SC across visualisation
types were statistically significant according to the Kruskal-Wallis
Test (H = 273.578, p < 0.001). Subsequent post-hoc Dunn’s Test fur-
ther confirmed the significance of differences between all pairs
of visualisation types (p < 0.001). Line plots, pie charts, horizontal
bars, and vertical bars have a mean SE of 5.129, 4.797, 4.205, and
3.930, respectively. SE also significantly differed across visualisation
categories, Kruskal-Wallis Test (H = 632.459, p < 0.001). A post-hoc
Dunn’s Test confirmed the significance between all visualisation
types (p < 0.001). Therefore, we conclude that visualisation types
strongly influence question-driven saliency. Pie charts and line plots
have larger regions activated in saliency maps, and their saliency
maps have higher Shannon entropy than bar plots.

4.5 Questions and Saliency
To better understand the interplay between visual saliency and
characteristics of the questions, we conducted further analyses on
whether question categories, question length, and question accu-
racy influence visual saliency.

Question categories. FE, CP, CV, RV, and F questions have a
mean SE of 4.575, 4.574, 4.533, 4.455, and 4.278, respectively. SE
significantly differs across question categories according to the
Kruskal-Wallis Test (H = 19.379, p < 0.001). A post-hoc Dunn’s Test
confirmed the significance between CP and RV questions (p = 0.024),
CP and F questions (p = 0.002), CV and F questions (p = 0.024), and
FE and F questions (p = 0.027). For saliency coverage, CP questions
have the highest SC of 12.9%, followed by CV (12.4%), RV (11.4%),
FE (9.4%), and F questions (8.4%). SC significantly differs across ques-
tion categories according to the Kruskal-Wallis Test (H = 165.202,
p < 0.001). A post-hoc Dunn’s Test confirmed the significance be-
tween all question types (p < 0.001). The findings indicate that par-
ticipants explore the largest area to answer comparison questions,
while they explore the smallest regions for filtering questions.

Question length. Our analyses showed a significant positive
correlation between SE and question length, supported by Spear-
man’s rank correlation coefficient (𝑟 = 0.192, 𝑝 < 0.001). Similarly, a
positive correlation between SC and question length was observed,
as evidenced by Spearman’s rank correlation coefficient (𝑟 = 0.195,
𝑝 < 0.001). This suggests increasing question length is linked to
higher Shannon entropy and saliency coverage.

Question accuracy. This analysis applied to 4,326 questions
that exhibited a combination of at least one correct and one wrong
answer. Figure 5 illustrates example saliency maps from an easy

question (accuracy > 85%) and a hard question (accuracy < 25%)
overlaid on the corresponding visualisations from SalChartQA. As
can be seen from the figure, the SE negatively correlated with
question accuracy, Spearman’s rank correlation coefficient (𝑟 = -
0.172, 𝑝 < 0.001). Similarly, a negative correlation was observed
between SC and question accuracy, as evidenced by Spearman’s
rank correlation coefficient (𝑟 = -0.226, 𝑝 < 0.001). We conclude that
the more areas participants explore (higher SC), the less likely they
will answer correctly.

5 VisSalFormer
Our analyses revealed that human visual attention is strongly in-
fluenced by users’ information needs when looking at information
visualisations. Informed by these findings, we then focused on
developing a computational method to predict saliency on informa-
tion visualisations taking the information needs into account. To
this end, we propose VisSalFormer – a Transformer-based saliency
model that is specifically geared to information visualisations and
that takes both visualisations and questions as input. As shown in
Figure 6, VisSalFormer consists of two main branches: In the upper
branch, a pre-trained Swin Transformer [43] encodes the visuali-
sation into vision features. In the lower branch, a pre-trained bidi-
rectional encoder representation from Transformers (BERT) [19]
encodes the question string into text features. In the cross-modality
feature fusion module, vision and text features are effectively fused
together into combined latent feature maps. Finally, a CNN-based
decoder converts latent features into saliency maps. We explain
the individual components of the model in detail in the following
subsections.

5.1 Visualisation Embeddings
We leveraged the capabilities of the Swin Transformer for encoding
visualisations. The Swin Transformer excels in producing robust
hierarchical features, which has demonstrated its effectiveness in
serving as a general backbone for various tasks such as image
classification, object detection, semantic segmentation [43], and
image restoration [39]. The hierarchical features from the Swin
Transformer aligned with the intrinsic complexity and element-
rich nature of visualisations [65]. We fed a visualisation into a
Swin Transformer, which is processed to 224× 224. Subsequently,
we directed the sequence of hidden states from the final layer of
the Swin Transformer through two linear layers with the size of
49× 768, each followed by a rectified linear unit (ReLU) activation
function. The linear layers and ReLU aimed to map the extracted
visual features into a unified fused feature space.

5.2 Question Embeddings
We employed the BERT model to encode questions, as it has gained
widespread recognition for its efficacy in various language under-
standing tasks, spanning from textual classification [62] to reading
comprehension [68]. We fed a question string into BERT to gener-
ate 768-neuron contextual word embeddings. To extract keyword
features from the question, we initialised a random 10× 768 vectors
as the query and used the text features as the key and value for a
cross-attention module. Then, the output of the cross attention was
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Figure 5: Sample saliency maps with computed Shannon entropy (SE) and saliency coverage (SC) under one easy question
(accuracy > 85%) and another hard question (accuracy < 25%) overlaid on visualisations in SalChartQA. Decreasing question
accuracy corresponds to higher Shannon entropy and saliency coverage.

fed to two linear layers with the size of 10× 768, each followed by
a ReLU activation function.

5.3 Cross-Modality Feature Fusion
We proposed a cross-modality feature fusion module to fuse visu-
alisation and question embeddings effectively. We concatenated
the output features of both vision and text features into a 59× 768
vector. Then, we added the output of self-attention to itself and did
a layer normalisation. The output was used as the key and value
of another cross attention, and the vision features were used as
the query. Then, we added the output of the cross attention to the
vision features and did a layer normalisation. Finally, we reshaped
the output vector to a 7× 7× 768 latent feature maps for decoding
into saliency maps.

5.4 Decoder
We implemented a CNN decoder to convert the latent features
into saliency maps. The decoder contains 7 sequential blocks, each
starting with a 3× 3 2D convolutional layers. For blocks 1 to 8,
a Batch Normalization (BN), a ReLU activation function, and a
dropout layer with 0.1 probability are applied after the convolu-
tional layer. After blocks 2 and 4, a 2-scale upsampling that adopts

bilinear interpolation is applied to the feature map. After block 6, a
4-scale upsampling that adopts bilinear interpolation is applied to
the feature map. For block 7, a BN and a Sigmoid activation func-
tion are applied after the convolutional layer to predict saliency
maps. The output of the decoder is 128× 128, and we resized it
with bilinear interpolation back to the original image resolution.
See supplementary materials for a visualisation of the decoder’s
architecture.

6 EXPERIMENTS
We conducted a series of experiments to compare the performance
of VisSalFormerwith state-of-the-art saliency prediction methods
on SalChartQA . Different ablated versions of the VisSalFormerwere
also evaluated.

6.1 Baseline Methods
Five baselinemethods, TranSalNet [45],MD-SEM [22],MD-EAM [65],
DVS [49], and UMSI [21], encompass a variety of approaches de-
signed to predict saliency or importance maps for visual stimuli
(TranSalNet andMD-SEM for natural scenes, others for information
visualisations).
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Figure 6: Overview of our proposed VisSalFormer model. Core to VisSalFormer is a cross-modality feature fusion module
to handle multi-modal input consisting of a visualisation and corresponding question. Input to the fusion module is the
visualisation and question embeddings obtained using pre-trained Swin and BERT Transformers. Finally, a CNN-based decoder
uses the fused latent features to predict a saliency map.

• TranSalNet [45] integrated transformer components to CNNs to
capture the long-range contextual visual information. TranSalNet
was trained with the Adam [34] optimiser for 10 epochs with a
start learning rate of 1𝐸 − 5, which was decreased by a factor of
10 every three epochs. Models are trained with a batch size of 4
for 30 epochs with a stop patience of 5 epochs.

• Multi-Duration Saliency ExcitedModel (MD-SEM) [22] aimed
to predict saliency maps for three viewing duration. We split
mouse clicks in SalChartQA into 0–3 s, 3 – 5 s, and 5 – 10 s saliency
maps for training. The MD-SEM model was trained from scratch
with a batch size of 8. We set the loss weights to 3 for CCM,
10 for KL, -5 for CC and -1 for NSS during training. MD-SEM
was trained with the Adam optimiser for 10 epochs with a start
learning rate of 1𝐸 − 4, which was decreased by a factor of 10
every three epochs. Table 2 reports the 5 – 10 s branch that has
the highest metrics.

• Multi-Duration Element Attention Model (MD-EAM) [65]
used the MD-SEM architecture to train element fixation density
maps in the field of visualisations. We generated element fixation
density maps on SalChartQA (0 –3 s, 3 – 5 s, and 5 – 10 s) for train-
ing. The MD-EAM model was trained from scratch with a batch
size of 8. We set the loss weights to 3 for CCM, 10 for KL, -5 for
CC, and -1 for NSS during training. MD-EAM was trained with
the Adam optimiser for 10 epochs with a start learning rate of
1𝐸 − 4, which was decreased by a factor of 10 every three epochs.
Table 2 reports the 5 – 10 s branch that has the highest metrics.

• Data Visualisation Saliency (DVS) Model [49] integrated
bottom-up saliency maps of the Itti-Koch [30] model with text-
region maps. Since it is not a deep-learning-based approach, we
used the official code1 in our evaluation.

1Code available at http://www.cs.sandia.gov/~atwilso/get_dvs.html

• Unified Model of Saliency and Importance (UMSI) [21] was
designed to predict importance maps for various visual stimuli,
including infographics, movie posters, mobile user interfaces,
advertisements, and webpages. Since there were no importance
map annotations on our SalChartQA , we directly used the official
weights in our evaluation.

6.2 Training and Implementation Details
Dataset preparation. We randomly split the SalChartQA into

training, validation, and test subsets with a ratio of 7:2:1. This
partitioning resulted in 2,114 visualisations (4,228 questions) in
the training set, 595 visualisations (1,190 questions) in the val-
idation set, and 291 visualisations (582 questions) in the test set.
VisSalFormer and all baseline methods were trained using the above
partition of SalChartQA . Notably, since all baseline methods are
limited to predicting a single saliencymap for each visualisation, we
merged two question-driven saliency maps from one visualisation
as the ground truth map for training baseline methods.

Implementation details. VisSalFormer used the Swin-T2 model
and started training from the ImageNet-1K [18] pre-trained weights,
and used pre-trained base-uncased weights for BERT3. The loss of
VisSalFormer is a weighted combination of Kullback Leibler diver-
gence (KL), Pearson’s Correlation Coefficient (CC) and Normalized
Scanpath Saliency (NSS). We set the loss weights to 10 for KL, -5 for
CC, and -2 for NSS during training. VisSalFormerwas trained with
a batch size of 32 for 200 epochs with the AdamW [34, 44] optimiser
with a learning rate of 6𝐸 − 5 and incorporated a weight decay of

2https://huggingface.co/microsoft/swin-tiny-patch4-window7-224
3https://huggingface.co/bert-base-uncased

http://www.cs.sandia.gov/~atwilso/get_dvs.html
https://huggingface.co/microsoft/swin-tiny-patch4-window7-224
https://huggingface.co/bert-base-uncased
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1𝐸 − 4. All experiments were conducted on a single NVIDIA Tesla
V100 GPU with 32GB VRAM.

6.3 Quantitative Evaluation
Metrics. We used five popular metrics for evaluating perfor-

mance: Normalized Scanpath Saliency (NSS), Pearson’s Correlation
Coefficient (CC), Kullback-Leibler divergence (KL), Similarity or
histogram intersection (SIM), and Area Under the Curve (AUC).
NSS and AUC are calculated on fixation maps, while CC, KL and
SIM are on saliency maps.

Results. We compared the performance of our VisSalFormer to
the five baseline methods, TranSalNet, MD-SEM, MD-EAM, DVS,
and UMSI. Table 2 demonstrated that VisSalFormer dominated base-
lines in all five metrics. We conducted paired-sample T-Tests be-
tween VisSalFormer and the best baseline model in each metric.
Significance was found in all five metrics with a significant level of
0.001. After being trained on SalChartQA from scratch, all baseline
methods performed better than their official weights. The perfor-
mance of all baseline methods without training on SalChartQAwas
inferior on SalChartQA, which suggested that the free-viewing vi-
sual saliency / importance is fundamentally different from question-
driven saliency.

Ablation study. We further carried out three ablation studies
to evaluate the effectiveness of our model. First, we replaced the
Swin Transformer with two commonly used image encoders to see
the influence of the vision features on question-driven saliency. We
substituted the Swin Transformer with two commonly used image
encoders, ViT [20] and Xception [14], to validate the effectiveness
of the visualisation embeddings in VisSalFormer . The first two
rows in Table 3 demonstrate that the Swin Transformer dominates
the other two encoders in CC, KL, SIM, and AUC, but Xception has
the highest NSS score. Second, we replaced the Bert with two newer
large language models (LLMs), Llama4 [63] and Bloom5 [67]. Due
to the limited computational resources at our disposal, we froze
the weights of the Llama and Bloom models. Third, we removed
the components in our model to analyse how each component
contributes to the full model. We evaluated the contribution of
question embeddings in three ablated versions. In these versions, we
removed the entire question embedding branch from VisSalFormer ,
the cross-attention layer in the cross-modality fusion module, and
the cross-attention and self-attention layers in the cross-modality
fusion module. The fifth to seventh rows in Table 3 show that
VisSalFormer outperforms all three ablated versions, highlighting
all the components in our pipeline is essential.

6.4 Qualitative Evaluation
Figure 7 depicts six predictions from TranSalNet [45] and VisSal-
Former. TranSalNet consistently generates identical saliency maps
for one visualisation despite variations in the posed questions. The
line plot accentuates this incongruity further, as TranSalNet exhibits
an expansive region of false positives on the left side compared with
the ground truth saliency maps. In contrast, the predictions from

4https://huggingface.co/Enoch/llama-7b-hf
5https://huggingface.co/bigscience/bloom-3b

VisSalFormer demonstrate a remarkable adaptability across diverse
questions, effectively encompassing most ground truth maps.

However, VisSalFormer still confronts three persistent challenges.
Firstly, the pie chart predictions from VisSalFormer have similar
saliency maps under distinct questions. This indicates a potential
limitation in effectively biasing saliency maps towards question-
specific regions by incorporating question embeddings. Secondly,
examining fixation clusters in VisSalFormer unveils a higher in-
cidence of false positives than the ground truth. This divergence
becomes particularly evident in the ground truth map correspond-
ing to the question “how much percentage showed in red color”
where solely the red colour label is salient. In contrast, VisSal-
Former activates labels for light blue and navy blue, unveiling a
perceptible misalignment with the ground truth. Thirdly, we found
a notable misalignment between VisSalFormer ’s predictions and
the ground truth when the question involves similar colours in
charts, such as “light blue” and “navy blue”. The model struggles
to discern subtle distinctions between these closely related hues,
leading to occasional activation of saliency for visually resembling
colours. This introduces an open challenge in charts that have sim-
ilar colour coding. Addressing these intricacies is imperative for
refining the fidelity and robustness of VisSalFormer.

7 DISCUSSION
7.1 SalChartQA
In this work, we introduced the SalChartQA dataset, the first large-
scale question-driven saliency dataset on information visualisations,
both in terms of the number of participants and the number of visu-
alisations/questions. The crowd-sourced dataset was collected on
AMTwith BubbleView clicks which has been proven to successfully
approximate eye fixations on information visualisations [33]. There
are two noteworthy advantages of BubbleView over eye trackers.
Firstly, BubbleView plays a pivotal role in achieving data minimi-
sation by selectively gathering information required for specific
computations, thereby excluding extraneous elements such as face
and eye images to protect user privacy online. Secondly, Bubble-
View proves to be a cost-effective alternative, presenting a more
budget-friendly option (∼ $1 per image) while ensuring on-the-fly
applicability within browser environments without compromising
data quality. Our large-scale data collection requirement (1) highly
benefits training saliency prediction models (c.f. Section 6.3) and
(2) inferring insights such as information needs with high statisti-
cal power. Although we mainly focus on question-driven saliency
prediction, SalChartQA can further enable many applications, such
as visualisation optimisation (redesign) [50, 58] and explainability
in Chart Question Answering (CQA) [17].

7.2 VisSalFormer – A novel method for
question-driven saliency prediction

As demonstrated in Section 6.1, all established baseline saliency
methods devised for information visualisation have relied only on
image features. Consequently, these methods can merely produce an
“averaged” saliency map, devoid of any fine-grained sensitivity to
specific questions or user queries. VisSalFormer , in stark contrast,
leverages both embeddings from visualisation and question in the
cross-modality feature fusion module, enabling VisSalFormer to
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Table 2: Evaluation of saliency methods on SalChartQA. The best results are shown in bold, second best are underlined. Stars
indicate statistical significance for the difference between VisSalFormer and the best baseline model (*: p < .001).

Method SalChartQA Training NSS ↑ CC ↑ KL ↓ SIM ↑ AUC ↑
UMSI [21] 0.538 0.196 1.196 0.401 0.687
DVS [49] 0.522 0.168 1.284 0.375 0.687

MD-EAM [65] 0.705 0.245 1.150 0.406 0.706
✓ 1.362 0.450 1.250 0.476 0.769

MD-SEM [22] 0.794 0.323 1.315 0.419 0.706
✓ 1.409 0.565 0.701 0.560 0.807

TranSalNet [45] 0.655 0.254 1.188 0.417 0.688
✓ 1.666 0.606 0.645 0.565 0.830

VisSalFormer (Ours) ✓ 1.782∗ 0.674∗ 0.532∗ 0.615∗ 0.839∗
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Figure 7: Sample visualisations and questions from the test set with human ground truth saliency maps (top row). Predictions
from the strongest baseline method (cf. Table 2 TranSalNet, middle row) and our VisSalFormer (bottom row) are shown below.
Our method predicts question-specific saliency maps that more closely resemble the human ground truth.

predict saliency maps intricately tied to the question, i.e. the user’s
information need. VisSalFormer takes an arbitrary question, then
extracts the question embedding for a fused embedding with the
visualisation. The question input of VisSalFormer goes beyond pre-
vious task-based saliency prediction models ([27, 71]), as previous
works are usually limited to a predefined set of tasks or objects. Our
experiments showed state-of-the-art performance of our method on
SalChartQA, the first question-driven saliency dataset (see Table 2).

The ablation study of replacing Bert with Llama and Bloom
yields two insights. Firstly, the question encoders, including Bert

and the two large language models [63, 67], exhibit comparable per-
formance in question-driven saliency prediction (see Table 3). Given
that Bert has fewer parameters than other large language models
(110 million [19] versus 3 billion or more), we conclude that a much
bigger large language model than Bert is unnecessary as a question
encoder for effective question-driven saliency prediction. Secondly,
the last two rows in Table 3 underline the importance of updating
the weights in question encoders. When comparing the updating
of weights to freezing Bert’s weights, the performance of updating
weights in Bert surpasses freezing weights across all five saliency
metrics. Thus, this paper not only presents a pioneering method but
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Table 3: Ablation study for VisSalFormer . The best results are shown in bold, second best are underlined. QE: question encoder,
FF: cross-modality feature fusion module. Stars indicate the statistical significance of the difference between the best and
second best for each metric (*: p < .001).

Methods Frozen QE NSS ↑ CC ↑ KL ↓ SIM ↑ AUC ↑
Swin [43]→ Xception [14] 1.787 0.643 0.567 0.604 0.831
Swin [43]→ ViT [20] 1.718 0.646 0.578 0.588 0.832

Bert [19]→ Llama [63] ✓ 1.681 0.655 0.569 0.602 0.832
Bert [19]→ Bloom [67] ✓ 1.685 0.659 0.559 0.603 0.834

w/o question embedding 1.581 0.575 0.656 0.567 0.825
w/o cross-attention in FF 1.681 0.628 0.587 0.592 0.827
w/o cross-attention & self-attention in FF 1.689 0.632 0.590 0.597 0.827

VisSalFormer (ours) ✓ 1.681 0.659 0.575 0.602 0.832
VisSalFormer (ours) 1.782 0.674∗ 0.532∗ 0.615∗ 0.839∗

also lays the groundwork for future improvements and applications
in question-driven saliency on information visualisation.

7.3 Limitations and Future Work
Our research demonstrated the importance of question-driven
saliency and the link between the question or information need
and the user’s visual attention when visually exploring informa-
tion visualisations. Our work refrained from studying text saliency
since BubbleView was not validated for text reading. While our
study has primarily centred on visualisation saliency, an intriguing
prospect for future research is to delve into the domain of text
saliency. However, the interplay between text and image saliency
holds considerable promise [60]. Future research should investi-
gate this dynamic relationship and develop models that can jointly
assess the saliency of both textual and visual components.

Integrating question-driven saliency into CQA models for im-
proved performance [41, 59] is one possible future work. By doing
so, we anticipate the potential for substantial improvements in their
performance and increased compatibility with eXplainable Arti-
ficial Intelligence (XAI) systems. Another avenue for exploration
is using question accuracy as a metric for assessing visualisation
quality. This approach could provide a quantifiable measure of how
well a visualisation aligns with the questions it aims to address,
ultimately contributing to more informed design choices. For ex-
ample, Wang et al. [66] demonstrated the potential utility of using
question accuracy as a metric to quantify recallability, which could
help guide the creation of more memorable visualisations.

8 CONCLUSION
This work addresses a critical gap in understanding the influence
of users’ information needs on their visual attention when explor-
ing information visualisations. To address the data scarcity issue
of question-driven saliency on information visualisations, we pro-
posed a novel large-scale saliency dataset that was collected online
using the BubbleView interface and contains 6,000 question-driven
saliency maps on 3,000 visualisations. Our analyses on SalChartQA
demonstrated that information needs, operationalised through a
QA paradigm, and visual saliency are tightly correlated. Using our
dataset, we then proposed VisSalFormer – the first computational

method for predicting question-driven saliency on information vi-
sualisations. Our method outperformed existing state-of-the-art
saliency predictionmodels in themost common saliencymetrics. By
shedding first light on the interplay between information needs and
visual attention, our work provides a new perspective on saliency
prediction, a benchmark of question-driven saliency prediction, and
informs the future development of new visual analytics applications
that are able to take users’ interests and needs into account.
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