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ABSTRACT

Research on activity recognition has traditionally focused
on discriminating between different activities, i.e. to predict
“which” activity was performed at a specific point in time.
The quality of executing an activity, the “how (well)”, has
only received little attention so far, even though it poten-
tially provides useful information for a large variety of ap-
plications. In this work we define quality of execution and
investigate three aspects that pertain to qualitative activity
recognition: specifying correct execution, detecting execu-
tion mistakes, providing feedback on the to the user. We
illustrate our approach on the example problem of quali-
tatively assessing and providing feedback on weight lifting
exercises. In two user studies we try out a sensor- and a
model-based approach to qualitative activity recognition.
Our results underline the potential of model-based assess-
ment and the positive impact of real-time user feedback on
the quality of execution.

Categories and Subject Descriptors

H.5.2 [Information interfaces and presentation|: Mis-
cellaneous.; 1.5.2 [Pattern Recognition: Design Method-
ology]: Feature evaluation and selection

General Terms
Algorithms, Human Factors

Keywords
Qualitative Activity Recognition, Weight Lifting, Real-Time
User Feedback

1. INTRODUCTION

It is well-agreed among physicians that physical activity
leads to a better and longer life. For example, a recent con-
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sensus statement from the British Association of Sport and
Exercise Sciences showed that physical activity can reduce
the risk of coronary heart disease, obesity, type 2 diabetes
and other chronic diseases [24]. Moreover, a recent study
estimated that at least 16% of all deaths could be avoided
by improving people’s cardio-respiratory fitness [5]. An ef-
fective way of improving cardio-respiratory fitness is to reg-
ularly perform muscle strengthening exercises. Such exer-
cises are recommended even for healthy adults as they were
shown to lower blood pressure, improve glucose metabolism,
and reduce cardiovascular disease risk [24].

A key requirement for effective training to have a positive
impact on cardio-respiratory fitness is a proper technique.
Incorrect technique has been identified as the main cause
of training injuries [13]. Moreover, free weights exercises ac-
count for most of the weight training-related injuries (90.4%)
in the U.S. [19]. The same study states that people using
free weights are also more susceptible to fractures and dislo-
cations than people using machines. The predominant ap-
proach to prevent from injuries and provide athletes with
feedback on their technique is personal coaching by a pro-
fessional trainer. While highly effective, the presence of a
trainer may not always be possible due to cost and availabil-
ity. Personal supervision also does not scale well with the
number of athletes, particularly among non-professionals.

A particularly promising approach to assessing exercises and
to providing feedback on the quality of execution is to use
ambient or on-body sensors. In sports science, a standard
approach employed by trainers is to film the athlete using a
camera and to use a video digitising system to perform of-
fline frame-by-frame annotation of the data. Alternatively,
athletes can use marker-based tracking systems that auto-
matically generate a digital skeleton. In activity recognition
using on-body sensing, a large body of work has investigated
automatic techniques to discriminate which activity was per-
formed. So far, only little work has focused on the problem
of quantifying how (well) an activity was performed. We
refer to the latter as “qualitative activity recognition”.

The aim of this work is to investigate the feasibility of auto-
matically assessing the quality of execution of weight lifting
exercises and the impact of providing real-time feedback to
the athlete - so-called qualitative activity recognition. We



focus on three aspects that we believe are key components
of any qualitative activity recognition system, namely the
problem of specifying correct execution, the automatic and
robust detection of execution mistakes, and how to provide
feedback on the quality of execution to the user. More specif-
ically, we explore two approaches for detecting mistakes in
an automated fashion. The first is to use machine learning
and pattern recognition techniques to detect mistakes. The
second approach, and the one proposed in this paper, is to
use a model-based approach and to compare motion traces
recorded using ambient sensors to a formal specification of
what constitutes correct execution.

The specific contributions of the work are: (1) a formalisa-
tion of the term “quality” in the context of activity recog-
nition; (2) the design and implementation of a novel frame-
work for the development of qualitative activity recognition
systems; and (3) the evaluation of a system developed with
the framework in a user study on the example problem of
assessing the quality of execution of weight lifting exercises.

2. RELATED WORK
2.1 Recognition of Sports Activities

A large number of researchers have investigated means to
provide computational support for sports activities. For ex-
ample, Michahelles et al. investigated skiing and used an
accelerometer to measure motion, force-sensing resistors to
measure forces on the skier’s feet and a gyroscope to mea-
sure rotation [21]. Ermes et al. aimed to recognize several
sports activities based on accelerometer and GPS data [12].
In the weight lifting domain, Chang et al. used sensors in
the athlete’s gloves and waist to classify different exercises
and count training repetitions [9]. More recently, the Mi-
crosoft Kinect sensor has been used in research and uses a
depth camera to extract a skeleton [11], which shows great
potential for tracking sports activities unobtrusively.

2.2 Qualitative Assessment

While several works explored how to recognize activities only
few addressed the problem of analysing their quality. There
has been work on using cameras for tracking spine and shoul-
ders contours, in order to improve the safety and effective-
ness of exercises for elder people [16]. Moeller et al. used
the sensors in a smartphone to monitor the quality of ex-
ercises performed on a balance board and provided appro-
priate feedback according to its analysis [22]. Similarly, Wii
Fit is a video game by Nintendo that uses a special bal-
ance board that measures the user’s weight and center of
balance to analyse yoga, strength, aerobics and balance ex-
ercises, providing feedback on the screen. With the objective
of assessing the quality of activities Hammerla et al. used
Principal Component Analysis to assess the efficiency of mo-
tion, but focused more on the algorithms rather than on the
feedback [15]. Strohrmann et al. used inertial measurement
units installed on the users’ foot and shin to analyse their
running technique, but didn’t provide feedback either [30].

2.3 Model-based Activity Recognition

Because sports exercises are often composed of well-defined
movements, it is worth analysing approaches that leverage
the capabilities of a model to analyse activities. For exam-
ple, Zinnen et al. compare sensor-oriented approaches to

model-based approaches in activity recognition [31]. They
proposed to extract a skeleton from accelerometer data and
demonstrated that a model-based approach can increase the
robustness of recognition results. In a related work, the same
authors proposed a model-based approach using high-level
primitives derived from a 3D human model [32]. They broke
the continuous data stream into short segments of interest
in order to discover more distinctive features for Activity
Recognition. Reiss et al. used a biomechanical model to
estimate upper-body pose and recognize everyday and fit-
ness activities[26]. Finally, Beetz et al. used a model-based
system to analyse football matches in which players were
tracked by a receiver that triangulated microwave senders
on their shin guards and on ball [4].

2.4 User Feedback

Some works that include feedback to the athlete include dis-
playing performance statistics on a screen for rowing, table
tennis and biathlon training [1]. Iskandar et al. even pro-
posed a framework for designing feedback systems for ath-
letes [18]. Hey et al. used an enhanced table tennis practice
table to visualize past impact locations by tracking the ball
using a video camera and a vibration detector [17]. A few
works have explored how to provide feedback on swimming
technique using a GUI [23] and a multimodal approach [2].
Several works aimed to track exercises to provide feedback
and thus increase motivation. Examples include the com-
mercial Nike + iPod that combines data gathered from sen-
sors in the user’s shoes with music, MPTrain that builds a
playlist by using the mapping between musical features, the
user’s current exercise level and the physiological response
[25], and MOPET that uses GPS, acceleration and heart
rate data to increase motivation and provide advice to the
user through a 3D avatar on a mobile device [8].

There has also been work on using sensors to provide physi-
cal activity energy expenditure, since the amount of calo-
ries burnt in an exercise is a very important metric for
performance evaluation. Approaches in this sense include
SensVest, a wearable device to record physiological data
from children playing sports [20] and using artificial neural
networks to estimate energy expenditure [29].

3. QUALITY IN ACTIVITY RECOGNITION

In order to discuss qualitative activity recognition we first
need to define what we mean by the “quality of an activ-
ity”. Although some works in activity recognition explored
aspects of quality there is still no common understanding in
the community as to what defines the quality of an activity
and particularly what is “high” or “low” quality.

The term “quality” has been widely discussed in other fields,
such as management research. The International Standards
Association defines quality as the “degree to which a set of
inherent characteristics fulfils requirements” [27] and Crosby
[10] defines it as “conformance to specifications”. What these
definitions have in common is the fact that one starts with
a product specification and a quality inspector measures the
adherence of the final product to this specification. These
definitions make it clear that in order to measure quality,
a benchmark is needed to measure the quality of a prod-
uct against, in this case its product specification. Adapting
this idea to the qualitative activity recognition domain it



becomes clear that if we can specify how an activity has to
be performed we can measure the quality by comparing its
execution against this specification.

From this, we define quality as the adherence of the execu-
tion of an activity to its specification. From this, we define
a qualitative activity recognition system as a software arte-
fact that observes the user’s execution of an activity and
compares it to a specification. Hence, even if there is not a
single accepted way of performing an activity, if a manner
of execution is specified, we can measure quality.

4. QUALITATIVE ACTIVITY RECOGNITION

Based on the definition of quality and qualitative activity
recognition it is worth discussing which are its main aspects
and challenges. Qualitative activity recognition differs from
conventional activity recognition in a distinctive way. While
the latter is concerned with recognising which activity is
performed, the former is concerned with assessing how (well)
it is performed. Once an activity is specified, the system is
able to detect mistakes and provide feedback to the user on
how to correct these mistakes.

This directly raises three important questions. First, is it
possible to detect mistakes in the execution of the ac-
tivity? Traditional activity recognition has extensively ex-
plored how to classify different activities. Will these meth-
ods work as well for qualitative assessment of activities?
The second question is how we specify activities. Two
approaches are commonly used in activity recognition: a
sensor-oriented approach, in which a classification algorithm
is trained on the execution of activities and a model-oriented
approach, in which activities are represented by a human
skeleton model. The third is how to provide feedback in
real-time to improve the quality of execution. Depending on
how fast the system can make the assessment, the feedback
will either be provided in real-time or as soon as the activity
is completed. Real-time feedback has the advantage of al-
lowing the user to correct his movements on the go, while an
offline system might make use of more complex algorithms
and provide useful information without distracting the user.

In this work, we try to tackle each aspect separately. In the
next sections we explore a wearable sensor-oriented classifi-
cation approach for the detection of mistakes, we describe
a model-oriented approach to the specification of activities
and we evaluate two feedback systems implemented using
the modelling approach.

5. DETECTION OF MISTAKES

The goal of our first experiment was to assess whether we
could detect mistakes in weight-lifting exercises by using ac-
tivity recognition techniques. we recorded users performing
the same activity correctly and with a set of common mis-
takes with wearable sensors and used machine learning to
classify each mistake. This way, we used the training data
as the activity specification and the classification algorithm
as the means to compare the execution to the specification.

For data recording we used four 9 degrees of freedom Razor
inertial measurement units (IMU), which provide three-axes
acceleration, gyroscope and magnetometer data at a joint
sampling rate of 45 Hz. Each IMU also featured a Bluetooth
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Figure 1: Sensing setup

module to stream the recorded data to a notebook running
the Context Recognition Network Toolbox [3]. We mounted
the sensors in the users’ glove, armband, lumbar belt and
dumbbell (see Figure 1). We designed the tracking system
to be as unobtrusive as possible, as these are all equipmentm
commonly used by weight lifters.

Participants were asked to perform one set of 10 repetitions
of the Unilateral Dumbbell Biceps Curl in five different fash-
ions: exactly according to the specification (Class A), throw-
ing the elbows to the front (Class B), lifting the dumbbell
only halfway (Class C), lowering the dumbbell only halfway
(Class D) and throwing the hips to the front (Class E). Class
A corresponds to the specified execution of the exercise,
while the other 4 classes correspond to common mistakes.
Participants were supervised by an experienced weight lifter
to make sure the execution complied to the manner they
were supposed to simulate. The exercises were performed by
six male participants aged between 20-28 years, with little
weight lifting experience. We made sure that all participants
could easily simulate the mistakes in a safe and controlled
manner by using a relatively light dumbbell (1.25kg).

5.1 Feature extraction and selection

For feature extraction we used a sliding window approach
with different lengths from 0.5 second to 2.5 seconds, with
0.5 second overlap. In each step of the sliding window ap-
proach we calculated features on the Euler angles (roll, pitch
and yaw), as well as the raw accelerometer, gyroscope and
magnetometer readings. For the Euler angles of each of the
four sensors we calculated eight features: mean, variance,
standard deviation, max, min, amplitude, kurtosis and skew-
ness, generating in total 96 derived feature sets.

In order to identify the most relevant features we used the
feature selection algorithm based on correlation proposed by
Hall [14]. The algorithm was configured to use a “Best First”
strategy based on backtracking. 17 features were selected:
in the belt, were selected the mean and variance of the roll,
maximum, range and variance of the accelerometer vector,
variance of the gyro and variance of the magnetometer. In



Table 1: Recognition performance

Window Size FPR Recall AUC Precision
0.5s 3.9 85.0 97.4 84.9
1.0s 1.8 93.5 99.5 93.5
1.5s 1.0 96.5 99.8 96.5
2.0s 0.7 97.2 99.9 97.2
2.5s 0.5 98.2 99.9 98.2

the arm, the variance of the accelerometer vector and the
maximum and minimum of the magnetometer were selected.
In the dumbbell, the selected features were the maximum of
the acceleration, variance of the gyro and maximum and
minimum of the magnetometer, while in the glove, the sum
of the pitch and the maximum and minimum of the gyro
were selected.

5.2 Recognition Performance

Because of the characteristic noise in the sensor data, we
used a Random Forest approach [28]. This algorithm is
characterized by a subset of features, selected in a random
and independent manner with the same distribution for each
of the trees in the forest. To improve recognition perfor-
mance we used an ensemble of classifiers using the “Bagging”
method [6]. We used 10 random forests and each forest was
implemented with 10 trees. The classifier was tested with
10-fold cross-validation and different windows sizes, all of
them with 0.5s overlapping (except the window with 0.5s).
The best window size found for this classification task was of
2.5s and the overall recognition performance was of 98.03%
(see Table 1). The table shows false positive rate (FPR),
precision, recall, as well as area under the curve (AUC) av-
eraged for each of the 5 tested on 10-fold cross-validation
over all 6 participants (5 classes). With the 2.5s window
size, the detailed accuracy by class was of: (A) 97.6%, (B)
97.3%, (C) 98.2%, (D) 98.1%, (E) 99.1%, (98.2% weighted
average).

We also used the leave-one-subject-out test in order to mea-
sure whether our classifier trained for some subjects is still
useful for a new subject. The overall recognition perfor-
mance in this test was 78.2 %. The result can be attributed
to the small size of the datasets (approx 1800 instances each
dataset, extracted from 39.200 readings on the IMUs), the
number of subjects (6 young men), and the difficulty in dif-
ferentiating variations of the same exercise, which is a chal-
lenge in Qualitative Assessment Activities. The use of this
approach requires a lot of data from several subjects, in
order to reach a result that can be generalized for a new
user without the need of training the classifier. The confu-
sion matrix of the leave-one-subject-out test is illustrated on
Figure 2.

5.3 Conclusion

The advantage of this approach is that no formal specifi-
cation is necessary, but even though our results point out
that it is possible to detect mistakes by classification, this
approach is hardly scalable. It would be infeasible to record
all possible mistakes for each exercise. Moreover, even if this

Normalised confusion matrix
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Figure 2: Summed confusion matrix averaged over
all participants and normalised across ground truth
rows.

was possible, the more classes that need to be considered the
harder the classification problem becomes.

6. MODEL-BASED SPECIFICATION

Due to the inherent problems of the classification approach,
we concentrated our efforts into trying to formalize a way
of specifying activities and recognizing mistakes by looking
at deviations from the model in the execution. This sec-
tion outlines our approach to qualitative activity recogni-
tion systems for weight lifting that helps minimize the effort
of translating specifications into systems. We implemented
a C# framework for the development of such applications
using the Microsoft Kinect sensor for body motion track-
ing. We illustrate our approach on the example of building
a feedback system for the Unilateral Dumbbell Biceps Curl
and the Unilateral Lateral Dumbbell Raise exercises using
our framework.

6.1 Activity Selection

An activity must have an appropriate granularity to be anal-
ysed. If the activity is too complex, it is more appropriate
to break it down into smaller activities. In our example,
even though a weight lifting exercise is commonly performed
in sets of 6-12 repetitions, for our purposes we consider an
activity as a repetition of the exercise. This way we can
analyse each repetition separately. A Biceps Curl repetition
involves raising and lowering the dumbbell, so we define the
beginning of the activity as when the user starts to lift it
and the end as when it reaches the initial position again.

6.2 Activity Specification

The activity should be specified as clearly as possible in nat-
ural language. The clearer the specification is the easier it
will be to model the activity. In our example, we used as
the specification the instructions provided by a weight lift-
ing book [7]. An activity specification can be comprised
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receives as input the raw position of the joints as
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Figure 4: Model for instruction 4. From the joints’
position coordinates, we extract the angle between
them and its range to count repetitions. For each
repetition, we calculate the overall range and check
whether it is within the specified limits.

of several instructions. For the Unilateral Dumbbell Biceps
Curl, the specification we used, adapted from [7], was the
following: (1) Stand solidly upright; (2) Your feet should be
shoulder-width apart; (3) Your shoulders should be down;
(4) Curl the dumbbell in an upward arc. Curl the dumb-
bell to the top of the movement when your biceps is fully
contracted; (5) Elbows pointing directly down and return to
the start position; (6) Don’t lean back and throw your hips
to the front.

6.3 Activity Modelling

From each instruction in the activity specification we create
a model of the recognition mechanism according to the com-
ponents in the framework. The components can be of five
different classes: Joint, Operator, Feature, Counter and
Classifier. The model architecture is illustrated in Figure
3 and Figure 4 shows an example of an instruction modelled
accordingly.

A Joint in our model is the XYZ position of each of the
20 joints provided by the Microsoft Kinect 1.0 Beta2 SDK.

Different instructions will make use of different sets of Joints.
In the example in Figure 4, the joints are the Wrist, the
Elbow and the Shoulder of each side.

Operators represent operations performed on top of the
raw position coordinates of a single joint or a set of joints.
The implemented operators include the XYZ coordinates,
distance and angles between joints. For example, in the
modelling of Instruction 4, we could describe the movement
in terms of the trajectory of the hand, but this wouldn’t be
ideal because it would depend on the length of each user’s
arms. Hence, we use an Operator to convert it to the angle
between the Hand, Elbow and Shoulder instead, because
this is not a user-dependent measure. Feature components
buffer the data that is provided by the operators and perform
statistical analysis (such as mean, standard variation, range,
energy, etc.) on a dataset when an event is triggered. In the
example, because we want to make sure the movement is
complete, we measure the range of the angle.

The classification is triggered by Counters. In our ap-
proach, we can classify an exercise in two ways: contin-
uously (with features being sampled in short intervals) or
discretely (with features being sampled after every repeti-
tion). If you need a feature to be monitored after a specified
time interval, you can use the Clock Counter. If you want
the feature to be extracted for each repetition, you can use a
Repetition Counter, which triggers events after detecting
a repetition. Finally, the classification of the quality of the
execution of the instruction is performed by Classifier com-
ponents. These can range from performing simple thresh-
olding operations to running more complex machine learning
algorithms. In Figure 4, the Angle between the Wrist, Elbow
and Shoulder is fed into the Repetition Counter, that uses a
strong filter and a peak counting algorithm to detect repe-
titions. When a new repetition is detected, this component
trigger the calculation of the range.

Once the model is complete, the class library we imple-
mented allows the programmer to translate directly the com-
ponents in the model into an object-oriented application. All
that is required is to input the parameters in the instantia-
tion of the components and to connect the components by
subscribing to each other’s events. We modelled and im-
plemented the feedback systems for 3 exercises: Unilateral
Dumbbell Biceps Curl, Unilateral Dumbbell Triceps Exten-
sion and Unilateral Dumbbell Lateral Raise.

6.4 Parameter Adjustment

There will be times when the available instruction is more
qualitative than quantitative, so some instructions should
be adjusted and parameterised to account for that. For ex-
ample, one of the instructions for the Biceps Curl was to
“Curl the dumbbell in an upwards arc towards your shoul-
der”. This instruction does not provide the metrics to un-
ambiguously build the model. One possible interpretation
is: the angle between the wrist, the elbow and the shoulder
should go from 180 to 0 degrees. However, these values need
to be tested and adjusted to make sure they correspond to
the measurements provided by the Kinect SDK. The frame-
work allows you to debug this step using events that lets you
monitor each step of the analysis.



IWe tried to keep the Classifiers as simple as possible so
they could be easily tweaked on the spot. This is useful
for a real life scenario where the trainer might want make
minor alterations in the specification. For example, a general
specification for the Biceps Curl says that one should curl the
Dumbbell all the way to the top. However, it is possible that
the trainer might want the athlete to perform the exercise
only halfway to the top in order to stimulate specific muscle
fibres. Our system is prepared to allow these parameter
modifications to be made easily.

6.5 User Feedback

In the user interface, the system should give feedback for the
conformance to each one of the instructions in the specifica-
tion separately. The feedback should be as clear as possible
using different visual and auditory cues. The classifiers out-
put different classes of quality that can be translated into
traffic lights that would turn green if the specification was
OK and red in case of problems in the exercise, for exam-
ple. Because of the complex nature of the exercises, it is
also recommended to give feedback on how to improve the
technique.

7. PROVIDING USER FEEDBACK

Besides mistake recognition and activity specification the
third and last aspect of qualitative activity recognition that
we explore in this paper is the feedback to the user. We car-
ried out a user study to evaluate a system developed using
our framework to check whether our approach to qualitative
activity recognition can lead to improvement in the quality
of exercise performance. First, participants were asked to fill
in a questionnaire regarding their experience with weight
lifting prior to the execution of the exercises. The 8 par-
ticipants were all male, 20-28 years old, with little or no
experience in weight lifting. The feedback systems include
a traffic light that indicates whether an instruction is being
performed correctly and messages instructing the user on
how to improve the execution. They also featured a range
of motion indicator and a repetition counter. The user could
see himself performing the exercise, with the feed from the
camera built in the Kinect sensor. The interface is illus-
trated in Figure 5. Then the participants were asked to
perform the Unilateral Biceps Curl and the Unilateral Lat-
eral Raise. We wanted to compare the execution of these
exercises with and without the feedback system, so we pro-
vided them with a written description of the expected exe-
cution of the exercise and asked them to perform each exer-
cise with a hand while the feedback system was turned off.
Then, we turned the feedback system on and asked them
to perform the same exercises but now with another hand,
in order to minimize the effects of tiredness. Each exercise
was performed in three sets of ten repetitions with increas-
ing weights of 1.25kg, 3.0kg and 7.0 kg. Participants were
instructed to stop whenever they felt uncomfortable. We
recorded data using a Kinect sensor connected to a Win-
dows 7 PC. The feedback was provided using a 27-inch LCD
display. After the exercises, participants were asked to fill
in another questionnaire regarding the experience with the
feedback system.

7.1 Results
With the Lateral Raise feedback system users made 23.48%
fewer mistakes per repetition, while with the Biceps Curl

SFateral Pumbbell Raise

Range of motion Speed

ofnzcin Started
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Figure 5: User interface and feedback system for the
Unilateral Dumbbell Lateral Raise exercise.

Table 2: Questionnaire results.
Question Mean Std

How helpful do you think such system 4.57 0.53
is in a gym environment?

How clear was the presentation of infor- 4.14 0.90
mation?

How much do you believe the feedback 3.86 0.90
influenced your performance?

Did you try to change your movements 4.71 0.49
according to the feedback?

Did the feedback improve your perfor- 3.57 0.79
mance?

feedback system users made 79.22% fewer mistakes. Partic-
ipants were rank ordered by the number of errors in each of
the two conditions. A Wilcoxon matched pairs signed ranks
test indicated that the number of errors was significantly
lower when using feedback (Mdn = 4.5) than without using
feedback(Mdn = 26.5), Z = 2.52, p = .008, r = .63. For
the lateral curl exercise a Wilcoxon matched pairs signed
ranks test indicated no significant difference between the
two conditions, Z = 1.61, p = .125. These results indicate
great potential for such systems in correcting mistakes and
consequently improving the quality of weight lifting activi-
ties. Table 2 shows the mean and standard deviation of the
questionnaire results averaged over all participants. Values
correspond to responses on a 5-point Likert scale with 5 rep-
resenting strongly positive and 1 strongly negative answers.
User responses were generally positive regarding doing the
exercises with the aid of a feedback system. Some sugges-
tions for improvement include making the messages larger
and easier to read and trying out different feedback visual-
izations, like video or 3D animation.

8. DISCUSSION
8.1 Activity Specification

In this paper we tried out two approaches to specifying ac-
tivities. In the first one, we specified the activity by using
machine learning techniques. We recorded data of users per-



forming an exercise in different ways, some of which corre-
sponded to common mistakes made in the execution of this
particular activity. In this approach, the activity specifica-
tion is achieved with the classifier training data.

Even though no formal specification is necessary for this ap-
proach, the classifier training can turn out to be a quite
tiresome task. In order to train a robust, user-independent
classifier, it necessary to record several executions of the
same exercise. Moreover, recording all possible mistakes is
a potentially infinite task, due to the complexity of human
motion and all possible combinations of mistakes. Also, if
the specification changes, it is necessary to record the train-
ing data all over again.

Due to these problems, we formalised the specification of
activities by developing a model that translates instructions
in the exercise specification into implementable components.
This approach proved to have several advantages. First,
because each instruction is specified separately, the system
can be tailored for different types of users, by using larger
or smaller subsets of instructions. For example, a system
for a user with back problems might include instructions
specifically designed for monitoring of the spine.

This also allows the reuse of instructions that are com-
mon across different exercises. For instance, both exercises
we implemented contained an instruction to keep the feet
shoulder-width apart and we were able to use the same mod-
elling and implementation for both cases. Moreover, because
the system architecture is based in layers, even if the instruc-
tion is not exactly across all layers, sometimes it is possible
to reuse some of them, with just some parameter changes.
For example, both the Biceps Curl and the Lateral Raise
require the user to lift the dumbbell. This requires the sys-
tem to monitor an angle between joints and check for its
range. By changing which joints are being monitored and
the target range parameters for the exercise, we were able
to reuse components. Also, because the model is parameter-
ized, if it is flexbile to specification changes. If the change
is small, tweaking some parameters could be enough, but
major modifications can be accomplished by swapping some
components in the model.

8.2 Mistake Detection

In the classification approach, mistake detection was done
by classifying an execution to one of the mistake classes.
As stated previously, the main challenge of this approach is
scalability. However, we could detect mistakes fairly accu-
rately. In the model-based approach, we detected mistakes
by looking in the execution data for deviations from the
model. Even though out model supports complex classi-
fiers, we kept our implementation as simple as possible by
using threshold-based classifiers. This allowed us to test
the implementation and make adjustments to the parame-
ters quite easily. In a real life setting, this would allow the
trainer to tailor parameters according to the user’s needs.
One weakness of our implementation is that we assume the
joint positions provided by the Kinect sensor to be accurate,
which is not an entirely unreasonable premise as suggested
by [11], but could be an issue for high performance athletes.
The general approach, however is not tightly coupled to the
tracking system, so the system could be enhanced with the

use of a more sophisticated tracking system.

8.3 Feedback

Once we implemented the qualitative assessment systems,
we evaluated the feedback provided in a case study. Our
results showed significant improvement in the Biceps Curl.
The Biceps Curl is fairly well known exercise, that people do
without taking the time to think about the technique, so the
system worked well in aiding users correcting mistakes. Only
a small improvement was detected for the Lateral Raise.
Even though users made almost a quarter of mistakes made
without the system, we can’t say that the results are sta-
tistically significant. This points out to a potential in the
system, but further inspection is necessary. We attribute
this result to the difficulty of performing this exercise with
the provided weights. The Lateral Raise stimulates mainly
the deltoids, which are significantly weaker muscles than the
biceps, so a fall in performance was expected.

Users were generally very positive about the system. Some
claimed to be “more conscious about movements due to both
the camera image and feedback visualisation” and to feel
“more confident in the movements I was making and able to
correct mistakes.” The use of feedback systems was praised:
“Without the feedback system you can not be sure whether
you are doing the exercise properly”; indicating that this
field of research deserves more attention.

Some participants thought the simple interface was good
(“simple signals gave exact instructions on what to correct”)
while others had some suggestions on how to improve it (“red
and green could be avoided (...) as color blind people will not
be able to see the difference” and “I would prefer images that
illustrate what to improve”), showing that how to design
interfaces for such systems is a challenge on its own.

9. CONCLUSION

In this work we investigated qualitative activity recognition
on the example of assessing the quality of execution of weight
lifting exercises. We formalized a definition of execution
quality and explored three key aspects of qualitative activity
recognition, namely how to deal with specifying activities,
detecting mistakes and providing feedback.

While the detection of a small number of mistakes is possi-
ble using standard pattern recognition techniques, the pro-
posed model-based approach scales better and also allows
to encode expert knowledge into the activity specification.
The significant positive impact of the real-time feedback pro-
vided by our system underlines the potential and opens up
the discussion of the wider applicability of this approach to
other activities and domains.
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