
Eye Gesture Recognition on Portable Devices

Vytautas Vaitukaitis
University of Cambridge
vytautas@vaitukaitis.lt

Andreas Bulling
University of Cambridge

Lancaster University
andreas.bulling@acm.org

ABSTRACT
Hand-held portable devices have received only little atten-
tion as a platform in the eye tracking community so far. This
is mainly due to their – until recently – limited sensing ca-
pabilities and processing power. In this work-in-progress
paper we present the first prototype eye gesture recognition
system for portable devices that does not require any addi-
tional equipment. The system combines techniques from
image processing, computer vision and pattern recognition
to detect eye gestures in the video recorded using the built-
in front-facing camera. In a five-participant user study we
show that our prototype can recognise four different continu-
ous eye gestures in near real-time with an average accuracy
of 60% on an Android-based smartphone (17.6% false pos-
itives) and 67.3% on a laptop (5.9% false positives). This
initial result is promising and underlines the potential of eye
tracking and eye-based interaction on portable devices.

Author Keywords
Eye Gesture, Gaze Estimation, Mobile Phone, Laptop, Eye
Tracking

ACM Classification Keywords
C.3 Special-Purpose and Application-Based Systems: Real-
time and embedded systems

INTRODUCTION
Portable devices, such as mobile phones and tablets, have
become an integral part of people’s everyday life. Previous
device generations were limited in their sensing capabilities
and processing power. The advent of powerful smartphones
equipped with high-resolution front-facing cameras points
the way toward gaze-based interfaces that will become per-
vasively usable in everyday life [1]. Eye tracking on portable
devices bears several challenges, in particular still inferior
processing power compared to desktop computers and the
lack of infrared illumination that is commonly used to in-
crease tracking robustness to varying lighting conditions.
In this paper we present the first prototype implementation
of an eye gesture recognition system that relies solely on

Copyright is held by the author/owner(s).
UbiComp ’12, Sep 5-Sep 8, 2012, Pittsburgh, USA.
ACM 978-1-4503-1224-0/12/09.

1

2

3

4

(a) “Diamond”

1

3

2

4

(b) “Plus”

1/3

2/4

(c) “Vertical”

1/3 2/4

(d) “Horizontal”

Figure 1: Eye gestures investigated in this work with cir-
cles indicating the discrete gaze directions used as gesture
components. Numbers in the circles and lines between them
illustrate the sequences of directions that form each gesture.

hardware available on modern portable devices. Unlike pre-
vious approaches, our system does not require any external
cameras or infrared illumination. Instead, it uses image pro-
cessing and computer vision techniques to track the head and
eyes in the video recorded from the front-facing camera.

RELATED WORK
Accurate eye tracking is challenging, particularly on the small
screens of portable devices. Drewes et al. proposed eye ges-
tures – sequences of several consecutive eye movements –
as an alternative to pointing-based interaction. They demon-
strated the feasibility of using eye gestures for interaction
with a mobile phone but eye tracking and gesture recognition
were still performed using a remote eye tracker and a high-
performance desktop computer [3]. Nagamatsu et al. de-
scribed a gaze-based interface for mobile devices that fused
gaze with touch input but required two external video cam-
eras with infrared diodes as well as a laptop computer for the
computationally intensive video processing [6]. Miluzzo et
al. are one of the few to investigate full on-device processing
[5]. Their system did not distinguish between different gaze
directions or recognise eye movement sequences but used
the phone’s built-in front-facing camera to detect which of
the nine grid areas overlaying the camera image the user’s
eye was located in. The user could then perform a blink to
trigger a command associated with each of these areas.



Camera

Face
detector

Eye
detector

Face tracker Eye tracker
Gaze

direction
estimator

Eye gesture
recogniser

Input image

Face location

Face location Eye locations

Initial face location Initial eye locations Gaze direction

Figure 2: Architecture and information flow within the eye
gesture recognition system. Grey rectangles indicate pro-
cessing components that are only called during initialization.

EYE GESTURE RECOGNITION
Our eye gesture recognition system runs entirely on an Android-
based mobile phone without the need for any additional equip-
ment. The system was implemented using the OpenCV com-
puter vision library. Figure 2 provides an overview of the
system. Input to the system is a raw video stream from
the device’s front-facing camera. Because accurate point-
of-gaze estimation is not required for gesture recognition,
these images are scaled down to reduce processing time and
thus increase system performance. The face detector first de-
tects the user’s face in each video frame using a Viola-Jones
20x20 frontal face detector [4]. The face location is then
used by the eye detector to detect both eyes in the facial area
using 18x12 eye detectors [2]. As soon as the face detector
recognises a face, the face tracker is initialized. During ini-
tialization, a histogram of hue values is extracted in the face
rectangle. In further frames, this histogram is back-projected
onto the image to create a probability matrix values in which
approximate probabilities of pixels belonging to the face. To
track this distribution across the consecutive frames we use
a mean shift algorithm. The eye tracker uses template match-
ing with the output image of the eye detector as a template
to track the eyes in consecutive frames. The matching is
performed using a normalized correlation coefficient metric.
Locations of both eyes are passed to the gaze direction esti-
mator together with their matching scores. Gaze estimation
also relies on template matching using a normalized correla-
tion coefficient metric. In the initialization phase, the user
is instructed to look at several different directions. Template
images are taken for each of the left, right, up, down and
middle (looking at the screen) directions as well as for “eyes
closed” for both eyes (see Figure 3). During operation, all
six templates are matched against the current image of the
eye that had the higher matching score in the tracker. The
template with the best match is returned as the estimated
gaze direction. Finally, the eye gesture recogniser analyses
the sequence of gaze directions to recognise a gesture. It first
discards the “middle” direction and merges several occur-
rences of the same gaze direction. It then considers the last
four filtered gaze directions together with their timestamps.
If such four directions were detected within a window of 4
seconds, the sequence is compared to the predefined set of
eye gestures. The gesture that matches the sequence exactly
is returned as the system’s output. Although the recogniser

(a) Up (b) Left (c) Middle

(d) Right (e) Down (f) Closed

Figure 3: Image templates for different gaze directions taken
during initialization. During operation, current eye image is
matched against these templates to estimate gaze direction.

supports an arbitrary number of eye gestures, here, we only
investigate four example gestures (see Figure ??).

EVALUATION
We conducted a study to investigate the feasibility of running
the gesture recognition system on two devices, namely an
Android-based smartphone and a laptop. Five participants
(four male and one female) aged between 21 and 25 years
took part in the study. None of them had used eye-based
interfaces before.

Setup
The study was performed in a quiet, indoor laboratory set-
ting with constant lighting conditions (see Figure 4). The
following hardware was used for the study:

• laptop with a 2GHz dual-core CPU, 2GB RAM and an
integrated camera capturing a 640x480 video at 25 frames
per second (fps);

• Samsung Galaxy S smartphone running Android 2.3 with
a 1GHz CPU, 512 MB RAM and an integrated front-facing
camera capturing a 640x480 video at 30 fps.

Procedure
Participants were seated about 70cm away from the first de-
vice facing its centre. While participants’ movements were
not constrained in front of the devices, we asked them to
keep the distance to the device as stable as possible. Also,
four key fobs were used to indicate the different gaze direc-
tions. The experimental procedure for each participant con-
sisted of four parts: initial training, input of four predefined
eye gestures on a laptop as well as a smartphone (see Fig-
ure 1), and interaction with a photo gallery application run-
ning on the phone using the same eye gestures. In the first
three parts, we only recorded the videos from the built-in
cameras of the devices. During the fourth task, the recogni-
tion was carried out in real time.

Initial training. Participants were asked to perform eight
repetitions of each gesture in front of a laptop computer. The
gestures were performed at fixed, 15-second intervals.

Eye gesture input on a laptop. Participants were asked to
browse the Internet. At intervals uniformly distributed be-



Figure 4: Experimental setup consisting of a smartphone
placed in a dock (1), key fobs to mark the suggested gaze
directions (2), and a laptop computer to monitor the course
of the experiment (3). The picture in the lower right shows
the gesture recognition system running on the phone.

tween 20 and 40 seconds participants were prompted to per-
form a specific eye gesture. This was repeated four times for
each gesture.

Eye gesture input on a mobile phone. Participants were
asked to interact with the phone’s browser. At intervals uni-
formly distributed between 20 and 40 seconds participants
were prompted to perform a specific eye gesture, which re-
sulted in another 4 repetitions for each eye gesture.

Interaction with the photo gallery. Participants were asked
to complete four different tasks using the photo gallery ap-
plication (see Figure 1) for which we recorded the time and
number of unsuccessful attempts until completion:

1. move to the next photo using the “Diamond” gesture;

2. return to the previous photo with the “Horizontal” gesture;

3. open the list of photo albums using the “Vertical” gesture;

4. close the photo gallery with the “Plus” gesture.

Data analysis
We manually annotated the recorded videos to identify frames
at which participants had finished a gesture. Then, an eval-
uation software was run to compute true positive (TP), true
negative (TN), false positive (FP) and false negative (FN)
counts as follows. A TP was counted if a correct gesture
was detected within a tolerance period of 3 seconds before
(corresponding to the typical duration of one gesture) and
1.5 seconds after each annotated frame. If none or an incor-
rect gesture was recognised during the period, it was counted
as a single FN. If a gesture was recognised outside the toler-
ance period or an incorrect gesture was recognised within,
the FP count was increased. Similarly, if the correct gesture
was detected repeatedly during a single tolerance period the
FP count was increased by the number of false detections.
Finally, the TN count was calculated as the number of inter-
gesture periods in the recorded video when the algorithm

Laptop Mobile phone

Tracking
22.73 fps 3.95 fps
174 ms 574 ms

Recognition
13.70 fps 4.95 fps
188 ms 319 ms

Baseline
24.39 fps 7.52 fps
108 ms 298 ms

Table 1: Mean frame rate (in fps) and maximum frame pro-
cessing time (in ms) for tracking and recognition on the lap-
top and the mobile phone. The baseline corresponds to dis-
playing the video on the screen without any processing.

correctly did not recognise any gestures. For instance, if 16
gestures were performed in the recorded video and the algo-
rithm recognised a gesture in two of the intervals between
gestures, TN count would be 15. From these we computed
sensitivity, false positive rate (FPR) and accuracy.

RESULTS AND DISCUSSION
Real-time capabilities
We first analysed whether the system was able to process the
video and recognise gestures in real-time. To this end, we
measured the processing time for each frame and computed
the mean frame rate.

As can be seen from Table 1, without any video processing,
the mean frame rate on the laptop is very close to the maxi-
mum frame rate of the camera. The frame rate while tracking
is also close to this limit. If the system performs face and eye
detection the mean frame rate drops to 14 fps. However, the
system spends only a small fraction of operating time in this
state. By analysing the recorded videos we found that this
proportion amounted to less than 0.03% of the experiment
time. The maximum processing times are always below 200
ms. This implies that the system can process video at a rate
greater than 5 fps even under high processing load.

On the mobile phone the frame rate without any process-
ing is 7.5 fps. This is considerably lower than the maxi-
mum frame rate of the phone’s front-facing camera. The
most likely cause for this drop in performance is the video
drawing on the screen that could not be switched off in the
OpenCV port we used. As expected, additional processing
further reduced this frame rate. Our current prototype imple-
mentation is able to detect the face and the eyes at about 5
fps and track both at around 4 fps.

Recognition performance
A low frame rate may hamper eye gesture recognition if one
or more gaze directions are missed and the system is there-
fore no longer able to recognise the corresponding eye ges-
ture. We therefore analysed the system performance on both
devices in more detail (chance level: 25%). Table 2 shows
that, on the laptop, the recognition system achieved a mean
accuracy for the initial training of 77.4% (sensitivity 61.4%,



Experiment Sens. [%] FPR [%] Acc. [%]
Laptop

Initial training 61.4 7.8 77.4
Recognition 33.8 5.9 67.3
Average 52.9 7.2 74.1

Mobile phone
Recognition 28.3 17.6 60.0

Table 2: Sensitivity (Sens), false positive rate (FPR) and ac-
curacy (Acc) of the eye gesture recognition system averaged
over all five participants.

Sensitivity / FPR [%]
Initial

training
Recognition

on laptop
Recognition on

smartphone
P1 78.1 / 0.0 68.8 / 5.9 35.3 / 58.8
P2 29.0 / 33.3 6.7 / 23.5 6.7 / 0.0
P3 73.3 / 0.0 71.4 / 0.0 70.0 / 17.6
P4 93.5 / 0.0 0.0 / 0.0 30.0 / 5.9
P5 31.0 / 6.1 11.1 / 0.0 0.0 / 5.9

Table 3: Sensitivity and false positive rate (FPR) for each
participant and all parts of the study.

FPR 7.8%), averaged over all participants. The performance
in the recognition trials was slightly lower with a mean ac-
curacy of 67.3% (sensitivity 33.8%) but at a lower FPR of
5.9%. As can also be seen from the table, the mean accuracy
for gesture recognition on the smartphone was lower with
60.0% (sensitivity 28.3%, FPR 17.6%). This was expected
given the lower processing frame rate on the smartphone.

Table 3 shows, however, that recognition performance varied
considerably across participants. On the laptop, the system
achieved a sensitivity of more than 65% for three of the five
participants with performance reaching up to 78.1% for par-
ticipant 1 for the initial training. The top performance was
achieved by participant 4 with a sensitivity of 93.5% but with
zero sensitivity in the recognition part. On the smartphone,
the system achieved a sensitivity of up to 70% for participant
3, while for participant 2 the sensitivity was only 6.7%. Af-
ter manual inspection of the recorded videos we found that
the most likely reason for these differences were low-quality
eye images and templates caused by head movements.

Three participants successfully completed all tasks with the
gallery application; the other two were unable to complete
all tasks and, after five unsuccessful input attempts, were
asked to proceed to the next one. Overall, participants fin-
ished a task with a single attempt in 50% of the cases.

Limitations and future work
The current work has several limitations. Our study only in-
volved five participants and only considered a stationary in-
door setting with controlled lighting conditions, fixed phone

position and distance to the participant. In addition, the num-
ber of gestures as well as the interaction tasks were deliber-
ately kept minimal. Furthermore, the prototype system does
not run in true real-time (i.e. at least at 15 fps) and is sensi-
tive to upper body and head movements.

We will address these limitations with a larger user study in
a natural daily life setting using an improved second proto-
type of the recognition system. More specifically, we plan to
investigate more efficient and potentially more robust tech-
niques for eye tracking, such as gaze estimation using low-
level image features and machine learning [8], as well as
techniques for continuous head pose estimation to make the
system more robust to head movements [7].

CONCLUSION
In this work we presented the first eye gesture recognition
system that runs entirely on a mobile phone and that, in con-
trast to earlier approaches, does not require any additional
equipment. Our prototype combines several image process-
ing, computer vision and pattern recognition techniques and
achieves a near real-time gesture recognition accuracy of
60% on a smartphone and 67.3% on a laptop. These initial
results not only demonstrate the feasibility but also under-
line the potential of eye gesture recognition and gaze-based
interaction with portable devices.

REFERENCES
1. A. Bulling and H. Gellersen. Toward Mobile Eye-Based

Human-Computer Interaction. IEEE Pervasive
Computing, 9(4):8–12, 2010.

2. M. Castrillón Santana, O. Déniz Suárez,
M. Hernández Tejera, and C. Guerra Artal. Encara2:
Real-time detection of multiple faces at different
resolutions in video streams. J. of Vis. Comm. and Image
Repr., pages 130–140, April 2007.

3. H. Drewes, A. De Luca, and A. Schmidt. Eye-gaze
interaction for mobile phones. In Proc. Mobility, pages
364–371. ACM Press, 2007.

4. R. Lienhart and J. Maydt. An Extended Set of Haar-like
Features for Rapid Object Detection. In Proc. ICIP,
volume 1, pages 900–903, Sept. 2002.

5. E. Miluzzo, T. Wang, and A. T. Campbell. Eyephone:
activating mobile phones with your eyes. In Proc.
MobiHeld, pages 15–20. ACM Press, 2010.

6. T. Nagamatsu, M. Yamamoto, and H. Sato. Mobigaze:
development of a gaze interface for handheld mobile
devices. In Ext. Abstr. CHI, pages 3349–3354. ACM
Press, 2010.

7. J. Tu, T. Huang, and H. Tao. Accurate head pose
tracking in low resolution video. In Proc. FGR, pages
573 –578, april 2006.

8. Y. Zhang, A. Bulling, and H. Gellersen. Discrimination
of gaze directions using low-level eye image features. In
Proc. PETMEI, pages 9–14. ACM Press, 2011.


	Introduction
	Related work
	Eye gesture recognition
	Evaluation
	Setup
	Procedure
	Data analysis

	Results and discussion
	Real-time capabilities
	Recognition performance
	Limitations and future work

	Conclusion
	REFERENCES 

