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ABSTRACT
Gaze is a powerful measure of people’s attracted attention
and reveals where we are looking within our current FOV.
Hence gaze-based interfaces are gaining in importance. How-
ever, gaze estimation usually requires extensive hardware and
depends on a calibration that has to be renewed regularly.
We present EyeMirror, a mobile device for calibration-free
gaze approximation on surfaces (e.g., displays). It consists
of a head-mounted camera, connected to a wearable mini-
computer, capturing the environment reflected on the human
cornea. The corneal images are analyzed using natural feature
tracking for gaze estimation on surfaces. In two lab studies we
compared variations of EyeMirror against established methods
for gaze estimation in a display scenario, and investigated the
effect of display content (i.e. number of features). EyeMir-
ror achieved 4.03° gaze estimation error, while we found no
significant effect of display content.

ACM Classification Keywords
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INTRODUCTION
The visual system allows us to perceive a highly detailed
reflection of our environment and plays an important role
when interacting with the real world. The point of gaze reflects
our overt visual attention and naturally indicates what we are
interested in [44]. Gaze has therefore long been used as a
modality for human-computer interaction since the early 90s
[9], among other things, for eye typing [15], target selection
[36] and cross-device object transfer [42].

Advances in mobile eye tracking point toward pervasive eye
gaze interfaces for daily usage [3]. These mobile eye-trackers
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Figure 1. Corneal Images, those show (1) a computer monitor, (2) faces,
(3) a poster and (4) an iPhone6 display.

are usually equipped with two cameras. An eye camera
captures a close-up view of a person’s eye to track its pupil
and movements using active infrared illumination, while
a scene camera records a person’s field of view. Gaze
estimation is the process of mapping pupil positions from
eye into world camera coordinates. An important aspect of
head-mounted eye tracking systems is the calibration, used to
create a function that maps eye to gaze positions. This step
creates serious problems and makes the usage of these devices
cumbersome if not impossible in pervasive scenarios [16].
The usual calibration procedure requires the user to fixate
a sequence of visual stimuli. Although current commercial
devices (e.g., Tobii Pro Glasses [39]) are built on model-based
(geometric) gaze estimation methods, they require at least a
one-point calibration, and more to increase its accuracy [45].
The problem of calibration drift [12], caused by different
factors (e.g., eye physiology, environmental factors, er the
device’s position), worsens gaze estimation over time. Hence
a periodic re-calibration is mandatory. Although various
research exists to enhance the calibration procedure, it remains
the major problem of interactive eye tracking systems [4, 30].
The latest commercial head-mounted eye trackers remain
regrettably expensive and rely on a direct connection to a
powerful computer for real-time data processing. Thus they
are usually not usable in real-world scenarios or in-the-wild
experiments.
In this paper we present EyeMirror, a mobile wearable
system for corneal imaging. It allows for calibration-free,
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moderate gaze approximation on surfaces (e.g., displays) in
the environment, while tolerating changes in distance and
orientation to them. Our eyes literally serve as a mirror of our
everyday doings and whereabouts. The parts that we can see
externally are the white sclera, the iris, and the black pupil –
the latter two of which are covered by the cornea. The corneal
surface is covered by the tear fluid, which turns it into a highly
reflective surface.
We placed a lightweight camera in front of the eye to capture
close-up images of the human eye. They contain a distorted
partial reflection of the user’s current field of view (see Figure
1). These corneal images are compared with the content
of surfaces in the environment (e.g., displays, posters or
books) using natural feature tracking. We developed two
approaches to approximate a person’s gaze. The first uses
the k-means cluster of all extracted key feature pairs as the
gaze point on the surface. The second roughly extracts the
pupil center and maps it to the display using a homography
matrix, based on the extracted key feature pairs [11, 41].
Both of our methods require knowledge about the surface’s
content. In the case of displays, the screen content can be
streamed; books’ and posters’ content has to be available.
The underlying concept is solely based on natural feature
tracking and a single head-mounted camera, which makes a
calibration procedure unnecessary. As the device is connected
to a wearable computer, users are able to freely walk around,
which is empowering for pervasive scenarios.

We conducted two consecutive laboratory experiments
to evaluate our approach. In the first experiment with 10
participants we compared four versions of EyeMirror – the
two already described approaches, and each approach using
distortion-corrected corneal images – against a state-of-the-art
Pupil Labs eye tracker [10], and using head orientation as
gaze direction based on a Microsoft Kinect v2 sensor. In
the first experiment we were primarily interested in gaze
estimation accuracy in a single display scenario. The task
was to look at different on-screen targets from multiple
distances and orientations in front of a projected display.
EyeMirror achieves moderate gaze estimation accuracy of
about 5° in each version. The second experiment explored the
effect of the number of features on gaze estimation accuracy.
This is of great importance, as the system is based on natural
feature tracking. In a single-desktop setting, we repeated the
same task as in the first experiment, but changed between six
different content types. We found no significant change in
gaze estimation accuracy among five of them. One content
type did not work, since it contained too few features. Hence,
our work provides the following contributions:

• Fully implemented wearable corneal reflection system
enabling calibration-free gaze mapping on ambient sur-
faces in real time.

• Investigation of two algorithms based on established con-
cepts (natural feature tracking) executable on-board for use
in the wild.

• Guidelines for the quality of surfaces (i.e., content); the
device can be used according to the results of the evalua-
tions.

We envision corneal imaging using monocular cameras read-
ily integrated into smart eyewear (e.g., Google Glass). This
qualifies EyeMirror to be suitable for real-world applications,
experiments in the wild, and gaze estimation on surfaces (e.g.,
displays, books, advertisements), containing sufficient fea-
tures, and other objects (e.g. human faces). The paper is
structured as follows: After an overview of existing research
related to our work, we will present EyeMirror’s approach. In
the second half of the paper, we present the two experiments to
assess EyeMirror’s gaze estimation accuracy and the effect of
the display content in a single-display scenario. We conclude
the paper by discussing our results, pointing out the current
limitations and giving an outlook for future work.

RELATED WORK
Our work builds upon methods for (1) eye tracking and gaze
estimation, as well as (2) corneal reflection analysis.

Eye Tracking and Gaze Estimation
For a detailed review of eye gaze tracking methods, we refer
the reader to Young and Sheena [47]. We restrict the following
to video-based eye tracking, as it is the most-used approach
nowadays. This can be divided into remote and head-mounted
eye tracking systems. Remote eye trackers use one ore more
cameras to track a user’s eyes and are fixed to the surface (e.g.,
a display) one intends to estimate gaze on. Recently, gaze-
based interfaces in stationary settings became a valid option, as
these devices became easily available at a low price point. The
latest remote eye trackers for usage with desktop computers
are available for under $200 (Tobii 4C [69]). However, making
gaze-based interfaces ubiquitous remains an open challenge
that cannot be resolved using remote technologies.
Head-mounted eye trackers are equipped with at least two
cameras, one capturing the eye, one the field of view. Many
approaches exist to track a person’s eye; most systems use
the Pupil Center Corneal Reflection (PCCR) technique [8].
Gaze estimation is always about finding a suitable mapping
from pupil to gaze positions and requires a user-dependent
calibration [5]. This mapping has to be renewed on a regular
basis to keep a constant highly accurate gaze estimation over
time [12]. Approaches utilizing visual markers [2] in the envi-
ronment or detecting surfaces (e.g., displays) directly in the
scene camera’s frame [43] allow for gaze estimation on spe-
cific interaction areas. However, these systems either need an
instrumentation of the environment, or rely on a multi-camera
system to track objects on the environment. EyeMirror can
directly estimate gaze on surfaces (e.g., displays) visible in the
corneal images. People are thereby free to move around, as it
is a mobile wearable device. At the same time, our method
does not require any prior calibration procedure and runs in
real time.

Corneal Reflection Analysis
The cornea of the human eye has mirror-like characteristics.
Different research areas took advantage of the specular reflec-
tions on the eye. Backes et al. [1] revealed that display reflec-
tions could be used to access sensitive data (e.g., passwords)
using a telescope. Nishino and Nayar [23, 24] pioneered in
corneal imaging. They developed the corneal catadioptric



Figure 2. Limbus detection is done via ellipse fitting (5, marked by the green rectangle and the orange ellipse) after a polar transformation (2) and radial
derivation (3). The eye center is extracted using image gradients (4). The final region of interest (6) contains the limbus and the eye center location
(yellow circle).

imaging system using a 3-dimensional geometric model of
the cornea. The derived system can be used for several ap-
plications like facial reconstruction and relighting [22], face
recognition [21] and the calibration of display-camera setups
[26]. EyeMirror follows an approach aiming for a simpler yet
fast method that allows for real-time application in pervasive
scenarios.

Besides the applications in the field of computer vision [27],
there are also several approaches that utilize the reflection
of the eye to do gaze estimation [28]. Schnieders et al. [34]
use a remote camera to detect a display in the reflected eye
image using its special properties (e.g., curved edges in
the reflection). Nakazawa et al. [19] used infrared light to
track the eye’s iris and pupil as well as to create patterns in
the environment visible in the reflection image. Nitschke
et al. [25] further improved the method by omitting the
active illumination in the environment. However, all these
approaches limited the user’s mobility by using a remote
camera. Moreover, additional components, like active
illumination or a 3D geometric eye model, were needed.
Nakazawa et al. [20] used a head-mounted device to capture
corneal reflections and achieved reasonable results for gaze
estimation on a 23-inch display. In their study they did not
investigate changes in orientation and distance to the display.

Takemura et al. [37] developed a mobile prototype to
estimate the object a user is focusing on. They utilized
natural feature tracking to detect objects visible in the corneal
images. In [38] they extended their prototype with a scene
camera. Thus, a calibration of the system is again needed.
Both approaches are based on 3D eye pose estimation and
geometric modeling of the eye, making them computationally
expensive. Their implementations achieve only 7.3 and 1
fps respectively. In addition, they apply a color correction
and unwarp the corneal images. They evaluated different eye
models in a very constrained setup with fixed head position
at one distance to the screen and achieved worse results for
gaze estimation than EyeMirror (9.5° in [38]). Hence, both
systems cannot be used for gaze based interaction in pervasive
settings.

With EyeMirror we built a wearable mobile corneal imaging
system using a single off-the-shelf webcam without any addi-
tional components, such as active infrared light [35] or optical
parts [37, 38]. Iris contour detection, as well as tracking the
eye center point, is based only on processing the close-up eye
images using computer vision methods, and works without
any highly complex computations based on a 3D model of
the eye [6]. In our approach we solely investigate the method
of natural feature tracking for calibration-free gaze approxi-
mation in real time. We use lightweight algorithms of a low
computational complexity, executable on a single-board com-
puter. Thus EyeMirror is a system made for the exploration
of gaze estimation in the wild. We evaluated our approach
against established methods for gaze estimation, as well as the
effect of the number of features to align EyeMirror.

THE EYEMIRROR SYSTEM
The EyeMirror system is designed to detect known aspects
visible in a person’s field of view to estimate gaze on ambient
surfaces (e.g., it is usable to measure attention on displays).
The only hardware required for a working system is a single
off-the-shelf RGB webcam. It is positioned underneath the
eye to capture a close-up video, revealing objects in the near
environment, reflected on the eye’s pupil and iris. The camera
is slightly rotatable and movable to center the eye in the im-
age, as needed for an optimal reflection image. The camera
frames are analyzed with image processing and computer vi-
sion methods. Figure 2 illustrates the processing pipeline for
extracting the limbus (iris contour) as well as the eye center,
used to approximate the pupil center. The output is a cropped
version of the raw input image, containing the region within
the iris contour, used for further operations. In the following
we explain the limbus extraction, the eye center localization,
and gaze approximation on displays.

Limbus Detection
Figure 2(1-3) visualizes the pipeline used for limbus extrac-
tion. The algorithm continuously receives close-up images,
shown in Figure 2(1). These raw video frames contain a lot
of information not needed for later processing. The sclera
can take up to one-third of the image, depending on the eye
pose and camera position, and does not reveal any relevant



Figure 3. EyeMirror’s two approaches for gaze estimation on surfaces,
here displays. One transforms the eye center point (red circle) onto the
screen using a homography (orange rectangle). The second uses the clus-
ter of the key feature pairs (green lines) as a gaze point (cyan circle).

information. The eyelashes may corrupt the result of later
processing steps (e.g., feature tracking). Hence, these areas
are removed from the raw image through a pre-defined re-
gion of interest. The limbus of the eye has two main image
characteristics: (1) it has an elliptical shape, and (2) it can
be distinguished well from the surrounding structures (sclera
and eyelids). A well-known approach is to look for the radial
edges and classify them as the limbus boundary using ellipse
fitting. EyeMirror’s algorithm is based on the approach by
Wood et al. [46]. As suggested by them, the derivative of the
polar transformation of the raw image is used, shown in Figure
2(2-3). The maximum of each row is marked as a potential
limbus point and fitted using a least-squares method for ellipse
fitting. This approach is highly robust across different users
and under varying lighting conditions, as it is not based on
pre-defined thresholds for edge detection.

Eye Center Localization
To realize gaze estimation, it is necessary to have a reference
point in the environment of what the user is currently looking
at. One of our approaches in EyeMirror declares the reflection
at the eye center as the gaze reference point. This point often
correlates with the actual pupil center. For eye center local-
ization, the method of image gradients, proposed by Timm et
al. [40], is used. Figure 2(3) shows the input image processed
with the function they developed, which extracts the location
where the most gradient vectors intersect. Like limbus detec-
tion, this method is robust under changing lighting conditions
and wide eye movements.

Gaze Estimation on Displays
With EyeMirror, we propose a novel approach for calibration-
free gaze estimation on surfaces without using a geometric
3D eye model [34], any additional hardware like active IR
illumination [19, 37], or a user calibration [38]. The corneal
images contain the real information about what a person is
currently looking at. In the case of interacting with a surface,
e.g. a display, its content is partially reflected on the eye’s
iris and pupil, as shown in Figure 2(1). In EyeMirror, we
developed two techniques for realizing gaze estimation on
surfaces, such as public displays using the corneal images:

Our first approach is similar to GazeProjector [11] and
Gaze+RST [41]. Instead of utilizing the world camera of

Figure 4. Building steps: (1) Extraction of camera board; (2) removing
glue around the lens to adjust focus; (3) camera is built into a custom
enclosure – rotatable and movable – and (4) mounted on a glasses frame,
connected to a (5) RaspberryPi. On the right, the final wearable and
fully functional prototype is shown.

a mobile eye tracker, we use the area within the limbus, con-
taining the reflection of the real world. These are matched
to the display’s content, recorded via screenshots. In both
image streams, key features are extracted using FREAK [29]
and matched using FLANN [18]. The basic idea is to use
the screenshots of the displays as template images, which are
searched for in the pre-processed corneal images. To estimate
the spatial relationship, the system uses the found key feature
pairs to compute a homography matrix, describing a transfor-
mation of points from the display’s image plane to the corneal
image plane. The inverse of the homography matrix is then
used to transform the eye center point to the corresponding
location on the screen. The orange rectangle together with the
red points in Figure 3 illustrate the procedure.

The second approach works in a similar manner in terms
of calculating the relation between the eye reflection and the
displays. In contrast to the previous version, we are computing
a k-means cluster for the found key feature pairs (with k = 1)
to extract the gaze point instead of detecting the pupil center.
The result is immediately chosen as the current gaze point, as
it is usually located near to the pupil’s center. The result is
shown by the cyan point in Figure 3. Note that most of the
features are found and matched within the area of the pupil.
The reasons are that (a) the distortion of the reflection in that
part is relatively small for most eye poses, and (b) the corneal
reflection is less noisy at the pupil than on the iris. This is
caused by the fact that the reflection on the iris is mixed with
its color, making it blurrier. Also, other distraction factors
(e.g., contact lenses) can corrupt the reflection there.

Both described methods are applicable to any surface provid-
ing feature-rich content (e.g., posters or books).

Implementation
The EyeMirror system consists of three components: (1) the
head-mounted prototype built from a 3D-printed glasses frame



[10] and a 3D-printed camera mount to place the webcam un-
derneath a person’s eye; (2) a single-board computer, running
the EyeMirror software component and (3) the surfaces in the
environment. The software is designed to be easily extendable
through plugins (e.g., further image processing algorithms).
In the following, we will outline the implementation to use
EyeMirror with displays. Each mobile device and the displays
are connected over WiFi. To keep the prototype device as
lightweight as possible, we are using a Logitech c270 camera
(Figure 4(1)), capturing frames with a maximal resolution of
1280 x 960 px at 30 fps. The camera covers a 60° field of view
and has a fixed focus of 4 mm. The camera has been stripped
of its original housing. To enable the camera to capture with
macro resolution, the glue around the lens had to be removed
to adjust the focus manually (Figure 4(2)). The camera board
is mounted on a 3D-printed glasses frame using a custom en-
closure (Figure 4(3-4)). In this way, the camera is movable
and rotatable; thus we do not need any further optical parts
like prisms [37]. As the joint between the frame and a custom
camera hold is lockable with a screw, the camera will not move
without further effort. Consequently, the relationship between
eye, camera and scene is rather fixed and re-adjustments are
not done more often than for other head-mounted eye tracking
devices. Figure 4 illustrates the building steps and the final
prototype.

All software components are developed in Python. For image
processing methods, the OpenCV 3.01 library is used. It pro-
vides methods for FAST and FLANN to extract and match
key features. For simple image operations (e.g., rotation and
maxima search) we are using numpy2, as it provides a fast
way to process arrays. Eye images are captured with a reso-
lution of 1280 x 960 px, resulting in an image with varying
resolution after limbus extraction. Depending on the eye pose
(i.e., the location of the limbus) the resolution ranges from
410 x 400 pixels to 400 x 360 pixels. Hence, these images
are not further down-scaled, to preserve a high number of
features. All image processing steps, i.e., limbus detection,
eye center localization and gaze estimation, are implemented
as separate sub-processes, integrated as plugins. The software
component is running on a Raspberry 3 single-board computer,
based on Raspbian OS, with up to 25fps. It is mountable to a
belt, enabling the whole system to be portable, while it is pow-
ered by an power bank. Camera frames are captured by using
pyuvc3, a python wrapper for libuvc, a cross-platform library
for USB video devices, built atop libusb. For a super-fast jpeg
decompression, the wrapper uses libjpegturbo. This makes
this library more robust and faster than the built-in OpenCV
camera plugin. Using EyeMirror with displays, their content
has to be streamed to the software component. We developed
a python script that broadcasts screenshots with a resolution
of 240 x 180 px to the RaspberryPi 3. In the case of other
ambient surfaces (e.g., books), the images have to be known
beforehand.

1http://opencv.org
2http://numpy.org
3https://github.com/pupil-labs/pyuvc

Figure 5. Calibration with chessboard pattern (1) to undistort the
corneal image (2). Computation of a homography may be more exact
(3).

EXPERIMENT – GAZE ESTIMATION ON A DISPLAY
We conducted a controlled laboratory study to evaluate Eye-
Mirror’s accuracy in estimating gaze on a projected display.
We compared our two approaches with corresponding versions
using distortion-corrected corneal images, a head-mounted
Pupil Labs eye tracker that uses marker tracking to estimate
its relative position to the display [11], and an approach with
a Kinect v2 sensor that uses only the head position and orien-
tation.

Independent Variables
We had two independent variables in the experiment: Mode
(i.e., method used for gaze estimation) and Location (i.e.,
where participants were standing in front of the display).

Mode: We used six different modes for gaze estimation on
the projected display: EyeMirror-Pupil (EM-P), transforming
the pupil center using a homography, and EyeMirror-Cluster
(EM-C) taking the cluster of the key feature pairs as gaze point,
both described above; EyeMirror-Pupil-Undistorted (EM-P-
U) and EyeMirror-Cluster-Undistorted (EM-C-U), both using
a corrected corneal image to investigate the effect of the spher-
ical distortion of the corneal reflection (as in [31]); Marker
Tracking (MT), using a set of visual markers shown on the
screen to track the orientation between the display and the eye
tracker provided by the Pupil framework4; and a simple Head
Orientation (HO) approach, tracking the participant’s head
with a Kinect v2 sensor, placed underneath the projected dis-
play. For MT we calibrated the eye tracker for each participant
separately from the centered location in front of the display.
For all EM modes we adjusted the camera (position and focus).
For EM-P-U and EM-C-U we sampled data while the people
were looking at a chessboard pattern for 5 seconds to dewarp
the images. The pattern filled out the whole projected display.
To compute the distortion map, we used OpenCV’s camera
calibration tool, using 20 samples for each calibration. Figure
5 highlights the calibration procedure and feature matching as
well as homography computation of the undistorted corneal
image.

4http://www.pupil-labs.com/blog/2013/12/036-release.html



Figure 6. Study setup: A large projected screen and the Kinect sensor
v2. In addition all locations (near-left, near-right, far-left, far-center and
far-right) and targets (T1-T9) are shown. .

Locations: We chose five different locations (2 near, 3 far)
to investigate the effect of varying positions and orientations
in front of the display. In doing so, we obtained images con-
taining many different reflections of the display (i.e., different
size and distortion), while simulating a more realistic setting.
The eye tracker was calibrated only for the central location,
as it is not likely that users re-calibrate for every position in
a dynamic setting. We did not give any visual feedback to
the participants, to prevent false positives. In addition, this
allowed us to keep the length of the experiment reasonable, as
all the data was sampled in two runs. We had to record the HO
data separately, as the head tracking was error-prone while
the mobile devices (eye tracker and prototype) were being
worn. We computed the gaze estimation accuracy as well as
the correction post-hoc for every mode.

Task & Procedure
We implemented a simple gaze-pointing task in which partici-
pants had to focus on targets, shown at nine different positions
(T1-T9). These were represented as red circles (40 pixels, or
approx., 58 mm) on the projection with equal distances be-
tween them (see Figure 6). A pilot study showed that artificial
lighting conditions could affect the quality of the reflected eye
image. We therefore created a realistic scenario by illuminat-
ing the room with natural light. Every participant was first
asked to calibrate the head-mounted eye tracker while standing
at the center location in front of the projected screen. Each
Mode, except HO, was recorded in parallel, as it is possible
to wear both mobile devices at once. The participants were
instructed to look at each target as quickly and accurately as
possible, while being free to move their heads. The targets
were shown for six seconds each. At the end, participants were
asked for demographic information including the color of their
eyes.

The task was done while standing in front of the projected
display at five locations (see Figure 6). Looking straight

ahead, they looked approximately at the vertical center of
the projection. We collected gaze data from the eye tracker
for MT as well as the location of the on-screen targets and
their time-stamps needed for post-hoc analysis. Furthermore,
we recorded raw video material for all EM modes including
calibration frames, as described above. Data was sampled
at 30 Hz for all six modes (i.e., 180 samples per on-screen
target = 6sec x 30 Hz), leading to 1620 samples for each Mode
and Location combination. In total we recorded 30 (Hz) x 6
(sec) x 9 (targets) x 6 (Modes) x 5 (Locations) x 10 (partic-
ipants) = 486000 samples. We dropped the first 2 out of 6
seconds per target, leading to 30 x 2 x 9 x 6 x 5 x 10 = 162000
(30% of all samples), resulting in 324000 samples in total (i.e.
54000 for each Mode). We discarded all data points of the first
two seconds for each target, as this was the maximal required
timespan to find the current target.

Experimental Design
We used a within-subject design for our experiment with two
independent variables, Mode (EM-P, EM-C, EM-P-U, EM-C-
U, MT and HO) and Location (near-left, near-right, far-center,
far-left, far-right). We counterbalanced the order of Location
between all participants using a Latin square. All modes
except HO were recorded in parallel. Thus each participant
performed the task twice. For each location, the nine targets
were displayed in a random sequential order, different between
participants, but identical within them (i.e., for both runs).

Apparatus
Figure 6 illustrates the experimental setup: we used a large
front-projected display with a size of 2.80×1.56 meters (di-
agonal: 3.20 meters) using a short-throw projector. The five
locations (L1-L5) were distributed as follows: the near loca-
tions at a distance of 1.2 m, and the far locations at a distance
of 2.20 m. The near-left and near-right locations were 1.35
meters away, and the far-left and far-right locations were 2.50
meters away from the display’s center with an angular offset
of ±26.5° and ±28.6°, respectively. The far-center location
had an angular offset of 0°. Standing at the far locations, the
display covers 64.8°, while at the near locations the display
covers 98.8°. Choosing the locations this way forces partici-
pants to move their heads, as the region covered by the display
exceeds the ocular motor range of ±55° [7]. To record the EM
and MT in parallel, we mounted EyeMirror’s camera under-
neath the eye camera of the monocular Pupil Labs eye tracker,
capturing the right eye. The Pupil Labs system was running on
a Thinkpad X201, transmitting the data via WiFi to a MacBook
Pro driving the display and capturing the EyeMirror camera
frames. For feature tracking we used the background image
(containing 9262 features, shown in Figure 6) without markers
as a template to prevent any effect on EM’s performance.

Participants
Ten participants (3 female) between 23 and 37 years old(M
= 27.5 years, SD = 4.55 years) and having three different
iris colors (5 brown, 4 blue, 1 green) were recruited from
a local university campus. All participants had corrected or
normal vision; none reported any visual impairments (e.g.,
color blindness).



MT EM�C EM�P EM�C�U EM�P�U HO

x y 2D x y 2D x y 2D x y 2D x y 2D x y 2D

near M 2.27° 1.39° 2.92° 3.89° 2.35° 4.90° 4.45° 3.50° 6.17° 4.23° 2.50° 5.28° 4.36° 3.12° 5.91° 3.93° 2.71° 5.32°
le f t SD 1.46° 0.94° 1.27° 3.16° 1.75° 3.12° 3.35° 2.15° 3.14° 3.43° 1.81° 3.38° 3.79° 2.13° 3.57° 2.69° 2.95° 3.23°

near M 2.44° 1.41° 3.12° 3.97° 2.38° 4.96° 4.08° 3.33° 5.79° 4.23° 2.57° 5.31° 4.53° 3.21° 6.08° 3.92° 3.01° 5.55°
right SD 1.74° 1.02° 1.51° 2.92° 1.78° 2.93° 3.34° 2.22° 3.23° 3.19° 1.89° 3.17° 3.68° 2.21° 3.51° 2.58° 3.14° 3.20°

f ar M 1.67° 0.96° 2.10° 2.80° 1.62° 3.48° 3.61° 2.27° 4.60° 2.92° 1.66° 3.61° 3.01° 2.29° 4.16° 2.43° 2.47° 3.97°
le f t SD 1.07° 0.68° 0.96° 1.93° 1.12° 1.83° 2.63° 1.52° 2.50° 2.11° 1.18° 2.03° 2.49° 1.54° 2.35° 1.94° 4.59° 4.60°

f ar M 1.50° 0.97° 1.99° 2.70° 1.71° 3.44° 3.27° 2.37° 4.39° 2.84° 1.80° 3.62° 2.79° 2.28° 3.99° 2.71° 2.37° 4.03°
center SD 0.98° 0.68° 0.80° 1.96° 1.11° 1.86° 2.40° 1.59° 2.31° 2.12° 1.18° 2.03° 2.37° 1.53° 2.25° 1.70° 3.86° 3.82°

f ar M 1.70° .89° 2.10° 2.79° 1.55° 3.41° 3.24° 2.32° 4.33° 2.84° 1.61° 3.50° 3.08° 2.29° 4.23° 2.65° 2.74° 4.35°
right SD 1.20° 1.01° 1.32° 1.76° 1.05° 1.66° 2.37° 1.53° 2.26° 1.90° 1.09° 1.80° 2.52° 1.57° 2.40° 1.74° 4.92° 4.78°

Table 1. Means and standard deviations of the overall, horizontal and vertical gaze estimation for all modes and locations.

Results
To evaluate the EyeMirror concept, we calculated the aver-
age gaze estimation error in degrees of visual angle. This
value states the difference between the position of the esti-
mated gaze point and the actual on-screen target of the six
Modes (EM-P, EM-C, EM-P-U, EM-C-U, MT and HO) and
the five Locations (near-left, near-right, far-center, far-left,
far-right). We performed a 6⇥5 (Mode⇥Location) within-
subjects ANOVA on gaze estimation errors and found a main
effect for Mode (F5,25 = 34.52, p < .001), and for Location
(F4,20 = 30.73, p < .001), but not for an interaction between
them.

In a subsequent post-hoc analysis in gaze estimation accu-
racy across all Modes, we found that MT differed significantly
from all EM modes (all p < .001) as well as HO (p < 0.05).
We found no significant difference in gaze estimation accu-
racy between HO and all EM modes. Comparing the gaze
estimation accuracy concerning different targets between EM
modes and HO also revealed no significant difference. All
EM modes performed better than HO, as shown in Table 1.
EM-C differed significantly from EM-P (p < .01), EM-C-U

Figure 7. Mean gaze estimation error for every location and mode. Error
bars indicate ± standard error of the mean.

and EM-P-U (both p < .05). Finally, we found a significant
difference between EM-P and EM-C-U (p < .01).

Overall EM-C achieved the highest accuracy for all EM modes
(M = 4.03°, SD = .04°), followed by EM-C-U (M = 4.22°, SD
= .03°). EM-P (M = 4.99°, SD = .07°) and EM-P-U (M =
4.87°, SD = .13 degree), showed the worst results overall. HO
(M = 4.66°, SD = .36°) yields better results than EM-P and EM-
P-U, but worse than EM-C and EM-C-U. Finally, MT achieved
the best results overall, i.e., the lowest gaze estimation error
(M = 2.41°, SD = .06°). All values were averaged over all
locations and summarized in Table 1. Transformed to absolute
rounded pixels, these values correspond to 64px (SD = 31px)
for MT, 106px (SD = 59px) for EM-C, 133 (SD = 72px) for
EM-P, 111px (SD = 64px) for EM-C-U, 128px (SD = 73px)
for EM-P-U and 122px (SD = 116px) for HO.

Figure 7 depicts the average gaze estimation error for every
Mode and Location. MT-far-center performed best (M = 1.99°,
SD = 0.22°), followed by MT-far-right (M = 2.08°, SD =
0.35°), MT-far-left (M = 2.09°, SD = 0.25°), MT-near-left (M
= 2.95°, SD = 0.47°) and MT-near-right (M = 3.10°, SD =
0.44°). All EM modes performed worse than MT, but within
EM-C showed the lowest error for EM-far-right (M = 3.42°,
SD = 0.18°), followed by EM-far-center (M = 3.44°, SD =
0.40°), EM-far-left (M = 3.48°, SD = 0.19°), EM-near-left (M
= 4.86°, SD = 0.43°) and EM-near-right (M = 4.95°, SD =
0.36°). The other Modes performed slightly worse.

Post-hoc tests on Location revealed that the significant main
effect stems from the participants’ distance to the display:
near-left differed significantly from far-left, far-center and
far-right (allp < .01). Near-right also differed significantly
from far-left (p < .01), far-center and far-right (all p < .05).
Overall, far-center showed the highest gaze estimation accu-
racy, i.e., the lowest error (M = 3.62°, SD = 0.1°), followed by
far-left M = 3.64°, SD = 0.11°), and far-right (M = 3.75°, SD
= 0.17°). The near locations led to worse results: near-right
had the highest error in gaze estimation accuracy (M = 4.97°,
SD = 0.15°), followed by near-left (M = 4.96°, SD = 0.09°).

To investigate further the gaze estimation of all EM modes, we
split the error measured in degrees of visual angle into two val-



Figure 8. The different display contents used in the experiment: C1 with 9262, C2 with 6988, C3 with 3314, C4 with 9476, C5 with 4239 and C6 with
934 features. The right picture shows the setup for the second experiment.

ues showing horizontal (x-direction) and vertical (y-direction)
errors separately. We found that for all Locations, the verti-
cal gaze estimation error is lower than the horizontal across
all Modes. Table 1 summarizes the results. On average MT
showed the lowest difference between horizontal and vertical
gaze estimation error, followed by EM-C.

To complete the analysis we further wanted to find out whether
the screen targets and thus screen regions resulted in different
gaze estimation accuracy. In doing so we analyzed the results
separately for each on-screen target. We found significant
differences between most of the targets across all Modes. For
MT we found significant differences between all targets ex-
cept (T1, T6), (T3,T4), (T3,T7), (T3,T9), (T4,T7), (T4,T9)
and (T7,T9). EM-C showed no significant difference for gaze
estimation accuracy between targets (T1,T3) and (T7,T9). For
HO the target pairs that showed no significant difference are
(T2,T4), (T2,T9), (T2,T6), (T4,T6) and (T5,T7). Every Mode
performed best for T5, whereas EM-C achieved the lowest
gaze estimation error overall (M = 1.43°, SD = 1.71°), fol-
lowed by EM-C-U (M = 1.54°, SD = 1.95°), MT (M = 1.67°,
SD = 0.92°), HO (M = 3.85°, SD = 5.36°), EM-P-U (M =
4.08°, SD = 2.07°) and EM-P (M = 4.70°, SD = 2.08°).

Finally, we found no significant difference of gaze estima-
tion error in iris color for all EM modes. EM-C performed
best, with 3.84°(SD= 2.31°); brown eyes achieved the lowest
gaze estimation error on average, followed by blue eyes with
4.12°(SD = 2.56°). Green eyes achieved the highest gaze es-
timation error with 4.20°(SD = 2.41°) on average for EM-C.
We found the same order for all other EM modes.

EXPERIMENT II – INFLUENCE OF DISPLAY CONTENT
In a second laboratory experiment we wanted to investigate
the connection between EyeMirror’s gaze estimation approach
and the content of the display. Therefore, we compared the
gaze estimation accuracy of EM-C across various display con-
tent, where the content used differed in the number of natural
features.

Independent Variables
We had one independent variable in this experiment, Content:
we used six different display content images (C1–C6), while
computing the gaze estimation accuracy for the display. The
different images are depicted in Figure 8 together with their

number of features. We used three different wallpapers (C1–
C3) as well as realistic desktop scenes where different kinds
of applications were opened (C4–C6).

Task & Procedure
We reused the same gaze-pointing task as in the first experi-
ment to be able to compare the findings to our initial results.
Looking at red circles, shown consecutively at nine different
positions on a desktop monitor, was done while sitting in front
of the display (shown in Figure 8). Raw video material for
EyeMirror’s clustering approach (EM-C) was recorded at 30hz.
Again, we discarded the first 2 seconds for each target.

Experimental Design
We used a within-subject design with one independent variable,
Content. We counterbalanced the order of Content between
all participants using a Latin square. As we had six different
images, each participant did the task six times. For each
content image, the targets (T1–T9) were shown in a random
sequential order.

Apparatus
Figure 8 illustrates the experimental setup: we used a multi-
touch enabled monitor with a size of 0.59×0.33 meters (di-
agonal: 0.68 meters). The participant was sitting centered in
front of the display at a distance of 0.6 meters, as she would
be sitting when interacting with the touch-enabled display. At
this position the display covers 31.6°of the field of view. The
EyeMirror camera frames were recorded by plugging it into a
MacBook Pro that also was driving the display.

Participants
Six participants (2 female) between 23 and 37 years old (M
= 27.5 years, SD = 4.55 years) were recruited from a local
university campus. All participants had normal vision; none
reported any visual impairments (e.g., color blindness).

Results
To evaluate EyeMirror’s accuracy, we calculated the average
gaze estimation error in degrees of visual angle. This value
states the difference between the position of the estimated
gaze point and the actual on-screen target for all different
Content images using the cluster approach of EM-C. While
computing the gaze estimation for all different Content images,



Figure 9. Mean gaze estimation error for the desktop content images
C1-C5, combined with the number of features.

we discovered that our approach did not work for C6. Hence
we performed a 5 ⇥ 1 (Content (C1–C5) x EM-C) within-
subjects ANOVA on gaze estimation errors and found no effect
for Content. In Figure 9 the gaze estimation error across
all targets and participants is plotted against the number of
features.

We achieved the highest accuracy, i.e., the lowest gaze es-
timation error, for C2 (wallpaper with 6988 features) (M =
4.30°, SD = 0.04°), followed by C5 (Mac desktop: opened
browser and IDE, 4239 features) (M = 4.27°, SD = 0.02°), C1
(wallpaper used in first experiment with 9262 features), C3
(wallpaper, 3314 features) (M = 4.34°, SD = 0.06°) and C4
(Mac desktop, opened pdf, 9476 features) (M = 4.36°, SD =
0.06°).

DISCUSSION
Our results show that – using corneal reflections (i.e., area
covering iris and pupil) – EyeMirror is capable of achiev-
ing a gaze estimation accuracy at 4.03° using the clustering
approach (EM-C) compared to 2.41° for MT and 4.66° for
HO.

Gaze Estimation
We used different approaches within EyeMirror to compute
the gaze point of the participants. Our results reveal that it
is sufficient to extract the cluster of all key feature pairs to
achieve still-reasonable results. Taking the eye center into
account and transforming it onto the display by using homog-
raphy matrices performs 0.77° worse (EM-P). While it seems
counterintuitive, it can be explained when we have a closer
look at the difference between both approaches. Each method
uses as input image the extracted limbus area (i.e., the pupil
and the iris). The reflection at the area of the pupil is less noisy
and brighter at the iris. Overall, features are found on both
the iris and the pupil. Most of the matches are detected at the
pupil, leading to key feature pairs. The main drawback of EM-
P and EM-P-U is the use of the eye center as a gaze reference
point. The method used for eye center localization does not
strictly correspond to the actual pupil center. Consequently, it
does not always correspond to a person’s real gaze, and only
transforms rough estimations.

In addition, we investigated the use of a camera calibration to
correct the input images for our approaches. As the eyeball
has a spherical structure, the corneal images are distorted. As
expected, we found a small effect when using the homography
matrix for transformation, such that EM-P-U is 0.12° more
accurate than EM-P. Having a look at Figures 5(3) and 3, the
approach is shown based on the raw and the corrected image.
The shape of the reflected display is more rectangular if using
the undistorted version. This supports the concept of comput-
ing a homography matrix, as the template (i.e., the screen’s
content) is also of a rectangular shape. Otherwise, we found
the opposite for the cluster approach. Using the undistorted
version of the corneal image (EM-C-U) significantly decreases
the gaze estimation accuracy by 0.19°. Correcting the images
changes the distribution of the key feature pairs. As most of
the matches are found at the pupil, they are arranged in an
elliptical shape supporting the structure of the pupil. After a
correction this is no longer the case, leading to worse results.

As we used different locations in front of the screen, we were
able to investigate the effect of different orientation and dis-
tances to the screen. We calibrated once for MT from the
far-center position for each participant to simulate a realistic
scenario. Hence, we achieved the optimal results for a one-
calibration scenario, as the calibration plane was orthogonal
to the participants. Using different locations results in vari-
ous distorted reflections on the human eye. EyeMirror is able
to partly deal with these changes, since its accuracy remains
constant among different orientations for the same distance.
In the case of EM-C and EM-C-U, this is primarily caused by
the sharp angle between participant and display for both near
locations. There, the highest gaze estimation error was found
for targets at the opposite side of the location (i.e., for Location
near-left the targets T3, T6 and T9). With increasing distance,
the angle between participant and display also increases. For
EM-P and EM-P-U there is also another reason: the larger
the distance to the display, the larger the reflected area. This
means that the template of the surface – here the display –
is detected more accurately, and thus the computation of the
homography matrix is more robust. The results for MT are
in line with existing findings [11]. Calibrating from the far
location leads to a smaller calibration plane than for near lo-
cations. Hence the eye tracker extrapolates for gaze positions
lying outside that region, causing worse gaze estimation.

Although we found no significant difference between HO and
all EM modes, EM achieved a constantly better gaze estima-
tion accuracy than HO. The good results of HO stem from
the experiment design, i.e., the location layout that forced
participants to move the head quite a lot, mostly for near lo-
cations. This fits with the very high standard deviation (see
Table 1) in gaze estimation for far locations. This is mainly
caused by the large variability in head movement propensity
[17]. If we also take a look into at the gaze estimation between
targets with minimal distance (e.g., far-left EM-C T4: 3.39°,
T5: 1.14° compared to HO T4: 7.52°, T5: 2.08°), we can see
that HO performs much worse than EM. This fact indicates
that the gaze of users who do a lot of eye movements might
be better approximated with EM than HO. In general, EM
gives a direct connection to the objects in the environment,



as they can be extracted from the corneal images. HO only
provides the position and orientation of the head in 3D space,
which has to be combined with knowledge about the position
of surrounding objects.
Thus, HO is not preferable for gaze approximation, especially
in settings where gaze is computed across a variety of sur-
faces (e.g., different multiple displays). The first experiment
investigated the gaze estimation accuracy of EyeMirror in a
lab setting. In real-world scenarios, HO is still not usable. If
the head tracking is done remotely, it requires the trackers to
be attached on every surface in the environment. Doing head
tracking via an IMU sensor will require a scene camera to cre-
ate a connection to the environment. However, EyeMirror has
a major advantage, as we get a realistic representation of the
human vision, combined with a value for gaze approximation.

Surface Content
We evaluated EM-C’s accuracy across six display content im-
ages, all different in the kind of information shown and the
numbers of provided features. Overall we found no signifi-
cant difference in gaze estimation error, having content with a
number of features between 3314 and 9476. Obviously, our
approach is not working with surfaces providing too few fea-
tures (e.g., C6 with 934 features). Interestingly, we achieved
the best results for C5 (4239 features). This may be caused by
the distribution of the features being rather uniform. Hence,
our results show that EyeMirror enables gaze approximation
in a normal desktop setting.

Applications
To summarize, EyeMirror is sufficient for approximate gaze
estimation and thus usable for settings in which a spontaneous
measurement of a person’s gaze is sufficient and no highly
accurate gaze estimation is required. The system can be used
to detect if someone is looking at a screen in a multi-display
setting and at which region, useful for gaze-contingent dis-
plays. EyeMirror is built as a mobile wearable system, so
it could be used as a tool for exploring of the human gaze
(e.g., attention measuring) in more unconstrained and mobile
settings [14, 13].
For example, information like detected faces (shown in Figure
1(2)) can be used to estimate social interaction. Tracking other
objects can be used to measure attention on many different
things. EyeMirror might be easily integrated into AR and VR
devices. A virtual reality headset provides the best conditions,
since nothing other than the screen content (i.e., the VR envi-
ronment) is reflected on the cornea of the eye. Approximating
someone’s gaze in VR can be used for foveated rendering [32].
With EyeMirror we developed a system that provides a base
for further investigations in a pervasive setting. The system
will be made open-source. As EyeMirror is easily extendable,
new algorithms and methods for different purposes can be
plugged in and explored.

Limitations
Apart from its advantages over state-of-the-art eye tracking
systems and applicability to pervasive application scenarios,
EyeMirror also comes with some limitations: First, our con-
cept of gaze estimation on surfaces is based on natural feature

tracking that requires an information stream about the content
(e.g., display content). However, with the rise of IoT, we be-
lieve that information like display content will be accessible.
For example, information about the environment outside is
available through Google Street View. Moreover, we think
that objects can be detected via a trained image classifier and
specific neural networks [33]. Second, EyeMirror’s perfor-
mance is influenced by the quality of the corneal images. The
camera is placed close underneath the eye to capture most
of the eye movements. To handle large eye movements, the
use of more cameras should be explored. In our current pro-
totype, we have to adjust the focus manually by rotating the
lens in the thread in order to retrieve sharp corneal images.
Whereas limbus and pupil center extraction are tolerant of
various lighting conditions, they might have an effect on the
overall approach. Obviously our proposed method does not
work in dark environments, as no information will be reflected
on the cornea.
Besides lighting, the eye-object distance is the another source
of blurred corneal images. If the user focuses an object at a
far distance, its representation on the corneal image is rather
unsharp, caused by the mirror properties. To adapt the system
to this new setting, the focus of the camera would have been
adapted. Using cameras with adjustable parameters, like ISO
sensitivity, aperture size and auto-focus, might help to coun-
teract the above limitations.
So far we have not explored the long-term usage of EyeMirror.
We can only argue about the duration of the experiment, which
lasted for at least 27 minutes (6 (sec) x 9 (targets) x 6 (Modes)
x 5 (Locations)). The presented results are representative for a
usage time within half an hour.
Nevertheless, we believe that EyeMirror is a promising case
toward a new generation of less-invasive head-mounted eye
trackers and a good baseline for using corneal reflections in
HCI.

CONCLUSION & FUTURE WORK
In this paper, we presented EyeMirror, a mobile system us-
ing a novel approach for calibration-free gaze approximation.
We built a low-budget prototype, which in contrast to exist-
ing head-mounted eye-trackers, only requires a single camera.
Capturing the environment through corneal images, it enables
gaze approximation on various surfaces (e.g., displays), solely
based on natural feature tracking. Therefore a representation
of the object’s content has to be known and provide enough
visual features.
In a laboratory experiment we compared different modifica-
tions of our approach against a Pupil Labs eye tracker and
using the head orientation as gaze. We found better results
for EyeMirror compared to HO in gaze estimation accuracy,
although they were not significant. The head-mounted eye
tracker gives the best results, but needs to be calibrated.
As next steps, we aim to further improve the technical part of
the method to realize better gaze estimation. We also plan to
develop a large platform to record and store corneal reflection
data. In that way a large data set can be created and used to
explore different kinds of computer vision algorithms, as well
as potential application cases.
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