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Abstract

Gaze estimation methods have significantly matured in recent years, but the large number
of eye images required to train deep learning models poses significant privacy risks. In
addition, the heterogeneous data distribution across different users can significantly hinder
the training process. In this work, we propose the first federated learning approach for
gaze estimation to preserve the privacy of gaze data. We further employ pseudo-gradient
optimisation to adapt our federated learning approach to the divergent model updates
to address the heterogeneous nature of in-the-wild gaze data in collaborative setups. We
evaluate our approach on a real-world dataset (MPIIGaze) and show that our work enhances
the privacy guarantees of conventional appearance-based gaze estimation methods, handles
the convergence issues of gaze estimators, and significantly outperforms vanilla federated
learning by 15.8% (from a mean error of 10.63 degrees to 8.95 degrees). As such, our work
paves the way to develop privacy-aware collaborative learning setups for gaze estimation
while maintaining the model’s performance.

Keywords: Gaze estimation, federated learning, privacy, gaze data distribution

1. Introduction

Human eye gaze is a crucial non-verbal cue used in a wide variety of applications, such
as gaze-contingent rendering in virtual reality (Hu et al., 2019, 2020b, 2021; Hu, 2020; Hu
et al., 2020a), gaze-based interaction (Mardanbegi et al., 2019; Piumsomboon et al., 2017),
gaze-assisted collaboration (Higuch et al., 2016; Zhang et al., 2017c), as well as eye movement-
based task recognition (Hu et al., 2022; Coutrot et al., 2018). Given the importance of
eye gaze, many researchers have focused on the problem of gaze estimation (Baluja and
Pomerleau, 1993; Liang et al., 2013; Choi et al., 2013; Lu et al., 2014), i.e. estimating gaze
position or direction from eye images. However, the collection of the large amounts of eye
images required to train deep learning models, or the exchange of such data across networks,
can pose significant privacy risks. In addition, the heterogeneous data distribution across
different users in real-world settings (in-the-wild settings) can significantly hinder the training
process of gaze estimation methods (Zhang et al., 2015, 2018). Therefore, preserving privacy
and maintaining high performance for heterogeneous data become two main challenges for
gaze estimation.
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To address these challenges, recent works have developed privacy-preserving approaches
for gaze applications. Nonetheless, they either only handle specific attacks and data vulner-
abilities (Bozkir et al., 2021; Steil et al., 2019; Hagestedt et al., 2020), or mainly focus on
enhancing data privacy, at the expense of model performance (Li et al., 2021; Bozkir et al.,
2021; Liu et al., 2019; Steil et al., 2019).

In this work, we propose the first federated learning (FL) approach (McMahan et al.,
2017) for gaze estimation. Federated learning is a machine learning paradigm that enables
training algorithms across multiple local datasets without exchanging data samples, in
order to alleviate the data sharing privacy risks. In addition, we employ pseudo-gradient
optimisation to adapt our federated learning approach to the divergent model updates caused
by the heterogeneous gaze data distribution among users. We evaluate our approach on the
MPIIGaze dataset (Zhang et al., 2017b) where the privacy-sensitive nature, as well as the
heterogeneous distribution of in-the-wild gaze data, is prominent. Our experimental results
show that our work alleviates the privacy concerns due to data sharing of conventional gaze
estimation approaches. It also reduces the model updates divergence in collaborative setups
while significantly outperforming vanilla federated learning by 15.8% (from a mean error of
10.63 degrees to 8.95 degrees). Finally, we discuss our method’s impact on users’ privacy
and data heterogeneity in terms of fairness and robustness.

In summary, the main contributions of our work are as follows:

e We propose the first federated learning approach for gaze estimation to preserve the privacy
of gaze data.

e We employ pseudo-gradient optimisation to adapt our federated learning approach to
the divergent model updates in order to handle the heterogeneous data distribution in
collaborative setups.

e We show that our approach enhances the privacy guarantees of conventional training
methods, handles the convergence of gaze estimation models, and significantly outperforms
vanilla federated learning.

2. Related Work

Gaze Estimation Methods Gaze estimation methods can be generally categorised as
either model-based or appearance-based (Zhang et al., 2017b). Model-based methods employ
features detected from eye images to estimate gaze direction and can hardly obtain good
performance in real-world settings because accurate eye feature detection relies on high-
resolution images and homogeneous illumination (Zhang et al., 2017b, 2019). In contrast,
appearance-based approaches directly regress gaze direction from eye images (Baluja and
Pomerleau, 1993; Liang et al., 2013; Choi et al., 2013; Lu et al., 2014) and can handle
low-resolution images and different gaze ranges. However, appearance-based methods require
a larger number of training eye images than model-based approaches to cover the significant
variability in eye appearance (Zhang et al., 2017b), which poses serious privacy risks since
eye images contain ample personal information, such as gender (Sammaknejad et al., 2017),
identity (Cantoni et al., 2015), and personality traits (Hoppe et al., 2018). Moreover, the
heterogeneous data distribution across different users in real-world settings, which is caused
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by many factors including the differences in gaze range, head pose, illumination condition,
and personal appearance (Zhang et al., 2017b, 2018), can significantly hinder the training
process of appearance-based gaze estimation methods.

Recent works (Li et al., 2021; Bozkir et al., 2021; Hagestedt et al., 2020; Liu et al., 2019;
Steil et al., 2019; Xu et al., 2021) have developed privacy-preserving approaches for gaze
applications. These works mainly focus on differential privacy solutions, where the model’s
performance is decreased through noise addition (Li et al., 2021; Bozkir et al., 2021; Liu et al.,
2019; Steil et al., 2019), including some dataset-dependent approaches (e.g. customising
added noise to the properties of the dataset) (Bozkir et al., 2021; Steil et al., 2019), while
others solely reduce adversarial attacks (Hagestedt et al., 2020). In contrast, our work
focuses on developing a privacy-preserving gaze estimator that maintains high estimation
performance.

Federated Learning Federated learning (McMahan et al., 2017) is a machine learning
setting where multiple decentralised edge devices (a.k.a. clients) or servers collaborate in
solving a machine learning problem. Each client owns a local training dataset which is never
exchanged nor transferred to the server; instead, focused updates intended for immediate
aggregation are used to achieve the learning objective. These updates are ephemeral and
cannot contain more information than the raw data according to the data processing inequality
principle. In addition, focused collection and data minimisation principles (cit) are applied.

FL architectures (Kairouz et al., 2021) can be categorised into centralised (a.k.a. client-
server) or decentralised (a.k.a. peer-to-peer) training. FL can also be classified according to
the type of clients. In cross-silo FL, participants are multiple organisations (e.g., medical,
financial, or geo-distributed data centres) that train on siloed data, while in cross-device FL,
participants consist of a large number of mobile or IoT devices. FL can be further classified
according to how data is partitioned among the clients in the feature and sample spaces.
Horizontal FL applies to the scenario where the clients share overlapping data features but
differ in data samples, in contrast to vertical FL. In this work, we train our gaze estimator
under a cross-device centralised horizontal federated learning setting.

The federated optimisation problem (Wang et al., 2021) is different from typical distributed
optimisation problems in terms of data heterogeneity, namely in the non-independent and
identical distribution (non-IID) of data among clients, the imbalance in size of the local
training sets, the limited and expensive communication, the computing capabilities, and the
clients’ availability. To effectively address these heterogeneity challenges, multi-model FL
approaches were introduced (Kulkarni et al., 2020; Kairouz et al., 2021). Multi-model learning
approaches in FL can be summarised as multi-task learning (Zhang and Yang, 2017) (i.e.
considering each client’s local problem as an independent task), local fine-tuning (Kairouz
et al., 2021) (performing local training steps locally on the final model), and meta-learning
(Baxter, 2000; Fallah et al., 2020; T Dinh et al., 2020) (exploiting the metadata) solutions.
Furthermore, solving local updates as pseudo-gradients was first proposed for speech tasks
(Chen and Huo, 2016), while adaptive learning was introduced in (Reddi et al., 2020) with the
goal of incorporating knowledge from previous iterations for a better-informed optimisation.
In consequence, Reddi et al. (Reddi et al., 2020) proposed FedOpt and showed that the
nature of federated learning allows optimising the model on two levels, the user and server
sides. In our work, we mainly focus on FedOpt, as, unlike multi-task learning, it does not
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require stateful updates, which makes it suitable for cross-device setups. It also empirically
outperforms meta-learning approaches (Mills et al., 2021), and can be fine-tuned. Overall,
FL holds the promise of increasing usability by training gaze estimation models on large and
diverse datasets of different participants while preserving data privacy.

3. Methodology

In this work, we propose a federated learning approach for gaze estimation that allows model
training to adapt to the divergence of participants’ heterogeneous data while enhancing users’
privacy.

3.1. Gaze Data Distribution

Previous works show that gaze estimation error is significantly affected by many factors
including glasses because of distortions, reflections, and thick frames, illumination conditions
between indoor and outdoor environments, personal appearance changes between long-term
recordings, different times of day, varying amounts of data samples per user, as well as
gender, race and age differences (Zhang et al., 2017b). Earlier works (Hansen and Ji, 2009;
Zhang et al., 2015; Mora and Odobez, 2013; Zhang et al., 2017a,b) tried to overcome these
challenges by improving user-specific and user-independent metrics. However, they rarely
consider the associated privacy risks of data-sharing and only offer one global dataset-specific
model for all participants.

Formally, for a better understanding of data heterogeneity, gaze estimation represents a
supervised task with features x and labels y. The dataset contains N participants with their
respective datasets {Dz}fil Each participant 4 is sampled from the distribution @ over all
available participants. Then, a data sample (z,y) is sampled from the participant’s local
data distribution P;(x,y).

The differences between the data distribution Pj(z,y) and Pj(z,y) for different partici-
pants ¢ and j is referred to as non-I1ID. The joined probability P;(x,y) can be formulated as
Pi(y | x)P;(x) or Py(z | y)P;(y). Hence, decoupling this joint distribution allows defining the
distribution skews as:

1. Non-identical distribution

e Feature distribution skew (covariate shift): The marginal distributions P;(z)
differ across participants, even if P;(y | ) = Pj(y | =) for all participants i and
j. In other words, each participant stores features that have different statistical
distributions compared to other participants (e.g. different lighting conditions and
personal appearance).

e Label distribution skew (prior probability shift): The marginal distributions
P;(y) differ across participants, even if Pj(y | z) = Pj(y | «) for all participants ¢ and j.
Each participant owns labels that have different statistical distributions compared to
other participants (e.g. some gaze targets are more frequent than others).

e Same label, different features (concept shift): The conditional distributions
Pi(x | y) differ across participants, even if P;(y) = P;j(y) for all participants ¢ and
j. This means that different participants may have the same labels corresponding to
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different features for each participant (e.g. the same gaze target location can be mapped
to different data samples).

e Same features, different label (concept shift): The conditional distributions
P;(y | «) may differ across participants, even if P;j(y) = P;(y) for all participants ¢ and
7. This means that different participants may have the same features corresponding to
different labels for each participant (e.g. the data is collected from different laptops
with different cameras and screen sizes).

2. Violation of independence Violations of independence can appear whenever the
distribution () varies during the data collection or its simulation during the training
process. In practice, devices should typically satisfy eligibility requirements (e.g., devices
should be idle, connected to an un-metered wi-fi connection, charged, and at night local
time) in order to participate in the training process. Hence, patterns in device availability
and local timing introduce strong bias in the data source. In the used datasets, the
different screen times and the number of days used for data collection significantly differ
across participants.

3. Quantity imbalance Different participants hold significantly different dataset sizes due
to the heavier use of devices.

Therefore, since the heterogeneity of data distribution is prominent in gaze estima-
tion tasks, we take into consideration the above challenges to improve the gaze estimator
performance across participants in collaborative setups.

3.2. Gaze Estimation Model

Based on Zhang et al. (Zhang et al., 2015), a multi-modal convolutional neural network
(CNN) is implemented for gaze estimation. The CNN regresses the pre-processed dataset
input z = (e, h), where e and h denote the 60x36 eye image and 1x2 head angle, respectively,
to the gaze angles ¢ in the normalised space. The final output g consists of the yaw g4 and
pitch gg angles. The loss function between the predicted ¢ and ground-truth g angle vectors
is calculated by the sum of the individual L1 losses.

In this paper, we mainly focus on the CNN optimiser that minimises the loss function
and updates the model parameters §. For CNN training, stochastic gradient descent (SGD)
is used with a learning rate n of 107°. A momentum term ~ of 0.9 is added to stabilise the
optimisation, speed up convergence, and reduce oscillations. Finally, a Nesterov accelerated
gradient (NAG) is added for a better anticipatory gradient update, as shown in Equation 1.

0=0—v : v =rv_1+nVeJ(O—yvi_1) (1)

3.3. Federated Learning

Federated learning (McMahan et al., 2017) is an approach to train deep learning models
on large and diverse datasets while preserving participants’ privacy. We specifically study
a cross-device centralised horizontal FL setup. This setup is characterised by the fact that
the data distribution is massively parallel and can include a large number of devices. It
also builds on a client-server architecture since a central server is needed to orchestrate the
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exchange and aggregation of model updates. Finally, the setup is horizontal as participants
share overlapping data features as they all train on similar modalities but differ in data
samples with every participant having their own data. Formally, X, = X,,.,Y), =Y, I, #
Iy;,¥Dyp,, Dy, pi # pj where X denotes the data feature space, Y denotes the label space,
and D denotes the dataset. Both spaces pairs (X),,Y),) and (X,,,Y).) are assumed to be
the same, whereas the user identifiers I, and I,; are assumed to be different.

During model training, as shown in Figure 1, each participant p; in a set of participants
trains a model without exchanging their local data. The server initialises the model’s
hyper-parameters, weights, and biases along with the number of communication rounds
and of local epochs. Thus, at each communication round ¢, the server selects a random
cohort of participants C' for training. In this work, C' = 0.8 to reduce the communication
traffic and to mitigate the straggler effect introduced by the computational heterogeneity
of the participants. The central server sends the current model parameters to the selected
participants. Each selected participant samples a batch of samples D! from its local dataset
D;. The batch size is denoted by |D?|. To train the local gaze estimation model, we minimize
the non-convex objective function f;:

1 N
min f(w) = = > filw) (2)
=1

weRY

In the supervised learning setting, f; is the expected loss over the data distribution of
participants N: fij(w) = E(, )~p,[li(w; z,y)] where l;(w;z,y) denotes the error of model w
in predicting the true gaze target y € Y; given the input x € X;, and F; is the distribution
over X; x Y; (the set of indexes of data samples in D;) with n; = |P;].

Since the data is non-IID, P; represents the empirical distribution of the participant’s data
samples. Therefore, f;(w) = Z(x,y)EDi Pi(z,y)li(w; x,y) where P;(z,y) is the probability
that participant i selects a particular sample (z,y). Therefore, we can rewrite Equation 2 as:
mine po f(w) = & SN % (w) where, Fi(w) = L Y70, fi(w).

Fach participant trains a model using their respective data and sends the model weight
updates to the central server. The server then combines the model updates received from
all participants, typically by computing the average (e.g. FedAvg (McMahan et al., 2017))
and sends the aggregated model updates back to the participants. This cycle is repeated
until the maximum number of rounds is reached. Furthermore, conventional FL optimisation
techniques (e.g. SGD) often require high communication costs. As a solution, multiple local
client updates are used (McMahan et al., 2017).

Nonetheless, due to the non-IID distribution, participants tend to drift towards the
minima of the local objective functions and, consequently, model updates become significantly
different across participants, hindering model convergence. In addition, previous works (Stich,
2018; Wang and Joshi, 2018) have shown that there exists an error term that monotonically
increases with each local step and is exacerbated with non-IID data. This error can be
negligible when the learning rate decays. As learning rate decay skips spurious local minima
by starting from an initial large learning rate, it benefits convergence by avoiding oscillation
with the decayed learning rates. Thus, a learning rate decay of 0.1 was added to our scheduler.
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Figure 1: Cross-device centralised horizontal FL

3.4. Adaptive Federated Learning for Gaze Estimation

Due to the heterogeneity of in-the-wild gaze data, training a single global model across users is
known to result in lower performance due to having different local updates across participants.
Therefore, simply averaging the updates (i.e. FedAvg (McMahan et al., 2017)) leads to
increasing the error rate even with learning rates or learning rates decay. Alternatively, the
expectation of the aggregated local updates should follow the global objective.

In this work, for each communication round ¢, the model is optimised on two levels.
While the participant optimiser aims to minimise Equation 2 according to the local data of
each participant, the server optimiser aims to optimise it globally on the aggregated model.
In other words, the participant’s updates are treated as pseudo-gradients to aggregate the
model on the server side while adapting to the heterogeneous local updates, which result
from the heterogeneous distribution by incorporating knowledge from previous iterations for
better-informed optimisation, as shown in algorithm ?? (lines 18-23). Specifically, the server
gathers the local differences Vﬁ, averages them into the pseudo-gradient V;, and updates the
aggregated model using the Adam optimiser.

Although adaptive optimisation methods (e.g. Adam (Kingma and Ba, 2014; Zaheer
et al., 2018)) have proven their effectiveness in training deep neural networks, improving
the performance of SGD, and guaranteeing convergence, especially for gaze estimation tasks
(Hansen and Ji, 2009; Zhang et al., 2017a,b), SGD maintains the same computation and
communication costs on the participant side and does not depend on the participant sampling
ratio. Here, the participant and server optimisers are SGD and Adam, respectively. This
combination of optimisers has been proven to be effective both theoretically and empirically
(Wang et al., 2021).

Additionally, for robustness, we investigate the performance of our approach against more
heterogeneous setups (e.g. poisoning attacks, outliers, etc.). As a simulation, Gaussian noise

was added with a standard deviation of 0.5 to the participants’ training data, according to
(Mills et al., 2021).
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Algorithm 1 Adaptive FL. Algorithm

1: The central server:
2: Initialises model parameters wg and broadcasts them to all participants.

3: for each global model update round ¢t = 1,2, ...,7 do

B The server determines Cy, which is the set of randomly selected participants.
5i for each participant ¢ € C} in parallel do

6 Obtain the latest model parameters from the server, i.e. set wf"n = wy.

7 for each local epoche = 1,2, ..., ' do

8 batches <— randomly divide dataset D; into batches of size M.

0: Obtain the local model parameters from the last epoch, i.e. set wf’e = w? =k,
10: for batch index b = 1,2, ..., B = 77 do
L1 Compute the batch gradient g,i’ using the participant optimizer in 1.
" . b+le b.e

12: Update model parameters locally: w; "¢ < w}"® — ug?.
13¢ end for
14: end for
15: Send the updated model V| = wj ;, — w; to the central server.
16: end for
17 Server optimiser:
18: The central server aggregates the received model weights:

: _ 1 1
190 Ve=1512iec Vs
20: The central server optimizes the model with its learning rate 3:
21: as = ,Sat,l + (1 - ‘B)Vt
22: v = g1 + (1 — 3)V? (Adam)
23 Wiy = W + 17 \/%t - Where 7 is the degree of adaptivity
24: The central server checks if the maximum number of rounds is reached.
25; The central server broadcasts the aggregated model parameters to all participants.

26: end for
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4. Results

As the participants’ population can rapidly evolve in gaze estimation applications, non-
IID distribution shifts arise and in-the-wild gaze challenges intensify. Thus, for a better
understanding of the model robustness and the heterogeneous updates across participants, we
first evaluate our approach and the baselines under person-specific and person-independent
evaluation schemes. The former holds out a fraction of the data of each participant for
validation to ensure that the validation set is representative and to measure the local
performance, while the latter leaves one participant out of the training set for evaluation of
the global model generalisation capability. We perform our evaluations on the MPIIGaze
dataset (Zhang et al., 2017b) in terms of the mean angle error, i.e. the difference between
the predicted gaze angles and the dataset ground truth.

Dataset The MPIIGaze dataset contains 15 participants with 213,659 annotated data
samples collected over 9 days to 3 months with varying head poses, gaze targets, and
illumination conditions. The number of images collected by each participant varies between
1,498 and 34,745. Consequently, the dataset was chosen due to its daily real-life representation
of different users, environments, and cameras, emphasising the heterogeneous in-the-wild
data distribution among different participants.

Baselines We compare our method against three baselines: An individual learning scheme,
a data centre learning scheme, and a conventional federated learning approach.

e Individual Learning: Each participant p; trains the model locally on the local dataset D;.
The data is neither shared with other participants nor with a central server. However, the
model is only exposed to a relatively small amount of samples which, consequently, yields
a poor generalisation performance on out-of-the-training-set samples, lacks robustness and,
therefore cannot be deployed to other participants due to the non-IID data distribution.

e Data Centre Learning: Since the availability of a large number of training samples
is a stepping stone for model training, data centre learning collects data samples from
all participants and trains the model on one central dataset. Therefore, the model
generalisation performance increases but participants’ data is shared with the central
server and privacy leakage risks arise.

e Federated Average (FedAvg): We compare our approach with the conventional feder-
ated learning setting, FedAvg, where the server aggregates the model updates by simply
averaging them.

Person-Independent Performance For individual learning, the results in Figure 2 show
that the gaze estimator yields a poor generalisation performance on out-of-the-training-set
samples (person-independent), lacks robustness and, therefore, cannot be deployed to other
participants due to the non-IID data distribution. For data centre learning, despite the
increase in model robustness shown in Figure 3, participants’ data is shared with the central
server and privacy leakage risks arise. Finally, for federated learning, we employ the same
number of communication rounds and computations to our adaptive framework and vanilla
FL (FedAvg) for a fair comparison. Instead of performing a number of steps in FedAvg, we
perform a fixed number of epochs for each participant to accommodate the data imbalance
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Figure 2: Person-specific (diagonal) and person-independent mean angle error for individual
training

of the local datasets and to avoid training on the same data sample repeatedly. Figure 3
shows that, in FedAvg, convergence issues occur. As shown in Figure 3 and Figure 4, in
user-independent setups, our adaptive FL approach outperforms FedAvg by 15.8% (from a
mean error of 10.63 degrees to 8.95 degrees) and achieves convergence while maintaining the
same communication cost as FedAvg. It also outperforms individual training (from a mean
error of 9.10 degrees to 8.95 degrees) and can potentially improve with more participants in
practical setups. Finally, the performance gap between our approach and the data centre
training comes at the cost of privacy and scale (see section 5) and can potentially be bridged
in practice with more participants and training rounds over time.

Person-Specific Performance The local model performance is essential for the adaptivity
of the gaze estimator to the divergent model updates, as well as to ensure fairness by correcting
the unintended behaviours exhibited by the gaze estimator in heterogeneous collaborative
setups. In the FL literature, fairness is measured by the minimum performance metric across
all clients. As shown in Figure 3, FedAvg resulted in a mean angle error of 9.3 degrees and
12.2 degrees for the minimum and maximum participant performance, respectively, while our
approach resulted in 7.5 degrees and 10.2 degrees.

Robustness Due to the open nature of FL and the involvement of a large number of
participants, the training process can be vulnerable to failures (e.g. distribution shifts and
data poisoning). As distinguishing heterogeneous distributions from poisoning attacks can be
challenging, we test our model on noisy participants to check the model’s robustness, i.e. the
ability of the gaze estimator to function correctly in the presence of such problems. Results,
in Figure 4, show that the model is robust to > 70% of noisy participants and it is important
to mention that the effective rate of malicious activity or outliers can be extremely small in
cross-device settings, where thousands of participants are involved (Wang et al., 2021).

10
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5. Discussion

Our work paves the way to developing privacy-preserving collaborative learning setups for
gaze estimation while maintaining the utility of the model. FL extends prior non-federated
gaze estimation directions along with other unique approaches to address privacy, fairness,
and robustness.

Privacy of Gaze Data Our FL approach is able to enhance data privacy via data
minimisation. It focuses on reducing the attack surface on gaze data by sending the model
minimal-focused updates needed for the gaze estimation task instead of the raw data
while maintaining a better model performance than FedAvg. It also yields a minor loss in
performance compared to the non-private data centre training, as shown in Figure 3, since
the model is no longer directly trained on the entire dataset but instead, the individual
model updates are combined by the aggregation function. In addition, our work presents a
privacy-preserving solution that does not interfere with the user experience as it requires the
same computation and communication costs as FedAvg on the user side.

Gaze Data Heterogeneity Deep learning models for gaze estimation often exhibit
unintended behaviours that lead to undesirable performance due to human, environmental,
and device differences resulting in data heterogeneity. Fairness concerns about gaze estimation
models can be exacerbated in FL settings due to data heterogeneity. We evaluated the
adaptivity of our work under person-specific, person-independent, and fairness metrics. Our
results show that our approach indeed adapts the model updates to the participants’ data
distribution resulting in better performance, as shown in Figure 3. We also investigated
model robustness against random noise, as shown in Figure 4. Nonetheless, attacks on gaze
estimation models can be further studied.

Limitations and Future Work Apart from the privacy guarantees presented in this paper,
a limitation of our work resides in the fact that FL does not provide provable (cryptographic)
privacy guarantees. Thus, a direction for further research could be to combine FL with
formal privacy technologies (e.g. differential privacy and secure aggregation (Bonawitz et al.,
2017)). In addition, as we introduce additional communication through FL in comparison to
conventional gaze estimation approaches, allowing participants to join the federation when
they are idle (i.e., charged and connected to wi-fi, or during local nighttime) could potentially
enhance the user experience in practical settings. Furthermore, applying these techniques
for high-dimensional and large-scale gaze estimation applications under in-the-wild non-I1D
distributions, and developing better evaluation metrics that cover both the person-specific
and person-independent performance for federated learning local and global models, remain
open research directions. Lastly, finding the right balance between fairness, robustness,
and privacy is a challenging task. While fairness ensures that the model performs well for
participants with different data distributions, robustness ensures that the outliers do not
affect the model performance, and privacy ensures that the model does not retain information
about outlier participants’ data. However, adaptive learning and personalisation techniques
are believed to balance this interplay (Jiang et al., 2019; Wang et al., 2019), and could be
further studied with our approach.
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6. Conclusion

In this paper, we presented a federated learning approach for gaze estimation that allows
model training to adapt to the divergence of participants’ heterogeneous data while alleviating
privacy concerns of data sharing. To the best of our knowledge, this is the first work that
integrates federated learning with gaze estimation tasks. We showed that our approach
enhances the privacy guarantees of conventional methods, handles the convergence of gaze
estimators, and significantly outperforms the performance of vanilla federated learning. We
believe that our work paves the way to developing privacy-preserving collaborative learning
setups for gaze estimation tasks while maintaining a good model performance.
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