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INDISTINGUISHABLE FROM MAGIC

Ten years ago, Thomas Friedman argued that so-
ciety had left the Information Age and entered 
the Age of Interruption.1 At that time, he was 
referring to interruptions caused by humans, 

for example through instant messages, emails, or cell-
phone rings. In recent years, with technology entering 
every corner of our lives, we’ve become deluged with in-
terruptions: from notifications on PCs, TVs, and laptops; 
to push messages on smartphones, tablets, and wear-
ables such as smartwatches and fitness trackers; to ads 
on public displays.

The frequency of interruptions will only increase as 
displays become even more ubiquitous. In 2007, people 
living in cities were already seeing an estimated 5,000 ads 
per day.2 By 2020, totaling the projected number of digi-
tal signs, wearables, desktop computers, and mobile de-
vices, there could be as many as 9.7 billion displays. This 
corresponds to an average of eight displays per  person, a 
25 percent increase from 2015. And this estimate doesn’t 

even include other types of displays 
such as those in cars and household 
appliances.

CONTINUOUS PARTIAL ATTENTION
In daily life we constantly shift our attention among 
various tasks, filtering relevant from irrelevant infor-
mation as well as processing and acting upon new in-
formation. Interruptions by displays further reduce our 
attention span—that is, the amount of concentrated 
time we can spend on any single task without getting 
distracted by other tasks. Consequently, sustained at-
tention is increasingly being replaced by continuous par-
tial attention: the act of paying simultaneous attention 
to multiple sources of information but only at a superfi-
cial level. In economics, this well-known phenomenon 
has led to the “attention economy” theory that acknowl-
edges both the scarcity and superficiality of consumer 
attention and, consequently, the importance of manag-
ing it.3

Continuous partial attention fundamentally limits us-
ers’ ability to efficiently interact with computing systems, 
as well as these systems’ ability to support their users, yet 
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it remains relatively unexplored in the 
human−computer interaction (HCI) 
literature. Here, I argue that manag-
ing user attention, and thereby turn-
ing continuous partial attention into 
sustained attention, is one of the most 
pressing but also difficult HCI chal-
lenges. Given that users’ sustained at-
tention can be interrupted during all 
explicit and implicit interactions with 
computing systems, the HCI commu-
nity should strive to develop com-
putational methods to estimate and 
analyze the visual attention of a po-
tentially large number of users, unob-
trusively and continuously over long 
periods of time in their everyday life, 
as well as user interfaces that leverage 
attention information.

FROM ATTENTIVE  
TO PERVASIVE ATTENTIVE 
USER INTERFACES
As Figure 1 shows, traditional user 
interfaces deliver information with 
a minimum of subtlety—they don’t 
consider the amount or type of infor-
mation being presented or the user’s 
attentional capacity. Because users 
can only simultaneously process a 
limited number of competing sources 
of information, overall information 
throughput is low.

Current attentive user interfaces op-
erate along a spectrum with respect to 
information throughput and sublety. 
At one end of this spectrum are dis-
plays that subtly present information 
on the periphery, without demanding 
that users shift their attention; these 
peripheral displays require low men-
tal effort to process information but 
at the cost of minimum throughput. 
At the other end of the spectrum are 
gaze-contingent displays that more 
obtrusively present information at us-
ers’ focus of attention, achieving max-
imum information throughput but re-
quiring more mental effort to process 
that information.

Future pervasive attentive user inter-
faces could manage user attention—per-
haps as an “attention account” that, like 
a bank account, maintains a balance of 
available attention. Drawing from this 
account, displays could then dynam-
ically adapt the amount and type of 
information presented to users based 
on their current attentional capacity, 
thereby simultaneously optimizing for 
information throughput and sublety. 
In addition, instead of interrupting 
the user whenever new information 
becomes available, future interfaces 
could trade off information importance 
with users’ current interruptibility 
level and time the delivery of informa-
tion  appropriately—for example for a 
period of low cognitive load, free atten-
tional capacity, or even boredom.4

Attentive user interfaces
What exactly is attention, and how 
can it be estimated and analyzed to 

facilitate such optimizations? One 
definition of attention widely used in 
psychology, cognitive science, and hu-
man vision research describes it as the 
process of concentrating on a discrete 
aspect of information while ignoring 
other perceivable information. 

Attention is typically further dif-
ferentiated into covert and overt as 
well as top-down and bottom-up.5 Co-
vert attention refers to the act of direct-
ing one’s mental focus to some infor-
mation. Estimating covert attention is 
challenging given that it’s encoded in 
the brain’s complex neural dynamics 
and therefore requires sophisticated 
technology, such as functional MRI or 
electroencephalography. In contrast, 
overt attention involves unconsciously 
turning one’s head or shifting one’s 
gaze in the direction of interest and 
can therefore be observed externally. 
Top-down attention is engaged when 
executing tasks consciously, whereas 
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Figure 1. Traditional user interfaces deliver information with a minimum of subtlety 
and, due to users’ limited attentional capacity, must keep throughput low. Current 
attentive user interfaces—with peripheral displays at one end of the spectrum and 
gaze-contingent displays at the other end—must trade off information throughput 
with the subtlety of information delivery. Future pervasive attentive user interfaces will 
continuously manage users’ attention in daily life, simultaneously optimizing for both 
information throughput and subtlety.
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bottom-up attention is a reaction to vi-
sual stimuli, such as a blinking light, 
moving object, or loud sound.6

As indicated earlier, we must divide 
our attention when interacting with 
multiple computing systems and of-
ten struggle to maintain our focus and 
concentration when faced with com-
peting distractions. This fundamental 
limitation inspired the development 
of attentive user interfaces that adapt 
to users’ current attentional focus 
and capacity. Given the challenges in-
volved in estimating covert attention, 
most such interfaces focus on estimat-
ing overt attention and use eye track-
ing as the core measurement tech-
nique. For example, IBM’s prototype 
SUITOR (Simple User Interest Tracker) 
system monitored users’ gaze and typ-
ing behavior during Web browsing 
and showed potentially relevant infor-
mation in a subtle ticker at the bottom 
of the display.7

Pervasive attentive user interfaces
While the first generation of attentive 
user interfaces was limited by major 
shortcomings in eye-tracking tech-
nology, the last couple of years have 
seen renewed interest in pervasive eye 
tracking and mobile attention mea-
surement. These activities are partly 
driven by significant price decreases 
in commercial stationary and head-
mounted eye trackers, which cost 
only a few hundred euros. Simulta-
neously, computer vision methods for 
head pose and gaze estimation using 
monocular cameras are continuously 

improving in robustness and accuracy. 
These advances point toward a 

new generation of pervasive atten-
tive user interfaces characterized by 
six key properties:

 › Unobtrusiveness. Further minia-
turization will make it possible 
to embed attention-sensing capa-
bilities unobtrusively into eye 
glasses, head-up displays, hand-
held devices, everyday objects, as 
well as ambient systems, making 
them attentive to the user.

 › Accuracy. In contrast to existing 
binary eye contact or coarse   
on−off screen attention detec-
tion, new interfaces will provide 
accurate visual attention 
estimates that can, for example, 
be used to generate fine-grained 
visual attention maps.

 › Large scale. While most current 
interfaces only support atten-
tion measurement of individ-
uals, pervasive attentive user 
interfaces will enable real-time 
measurement of collective visual 
attention—that is, attention dy-
namics of large groups of users.

 › Long-livedness. Attention mea-
surements won’t be limited to 
dedicated short-term recording 
sessions but will be conducted 
over long periods of time in 
everyday life, thereby forming a 
holistic, spatiotemporal record 
of users’ visual attention.

 › Seamlessness. To facilitate large-
scale and continuous attention 

measurements in daily life, 
next-generation attentive user 
interfaces will seamlessly switch 
among multiple sensors to aggre-
gate attention information across 
numerous users and displays.

 › Context awareness. Attention 
measurements will be contextu-
alized by users’ current situation 
and activities—for example, by 
combining eye tracking with 
inertial sensors and GPS readily 
integrated into mobile phones 
and smartwatches.

These properties are key to address-
ing the challenges of attention man-
agement and continuous partial atten-
tion in a multi-billion-display world. 
However, for pervasive attentive user 
interfaces to emerge, researchers must 
still overcome several obstacles, most 
notably in estimating and modeling 
attentive behavior.

ATTENTION ESTIMATION
Overt visual attention can be esti-
mated by mapping eyeball rotations, 
typically inferred from images of 
users’ eyes, to gaze positions in a ref-
erence coordinate system such as 
on a display or in a 3D environment. 
State-of-the-art gaze-estimation ap-
proaches rely on hybrid feature- and 
model-based methods and require 
special-purpose hardware, such as 
infrared lights and stereo cameras, to 
track users’ heads and eyes.8 

These approaches can achieve high 
estimation accuracy in controlled set-
tings but are sensitive to changes in 
lighting conditions, severely limiting 
their use in mobile everyday settings. 
In addition, current gaze-estimation 
systems are typically not intercon-
nected, which prevents seamless mea-
surements across multiple displays 
or users. While remote systems re-
quire the user to stay within a defined 
tracking box, head-mounted systems 
require augmenting each individual 
with cumbersome equipment.

Appearance-based gaze- estimation 
methods could address some of these 

(a) (b)

Figure 2. Advances in computer vision make it possible to robustly estimate user atten-
tion on (a) mobile devices such as tablets and laptops using their integrated front-facing 
cameras and on (b) public displays equipped with wide-angle cameras.
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limitations. Such methods only require 
a single off-the-shelf monocular RGB 
camera and rely on machine learn-
ing to directly map eye appearance to 
gaze directions. As Figure 2 shows, ro-
bust attention measurements could be 
performed on the billions of camera- 
equipped mobile devices9 and public 
displays 10 already in use today.10

Current research efforts focus 
on porting appearance-based gaze- 
estimation methods from the labo-
ratory to real-world settings.11 From 
a computer vision perspective, these 
settings are characterized by consid-
erable variability in terms of user and 
background appearance, directional 
lighting, shadows and glare, and users’ 
head pose and distance to the camera, 
as Figure 3 shows. State-of-the-art gaze- 
estimation methods achieve accuracies 
of about six degrees of visual angle in 
the practically most useful—but also 
most challenging— user- and device- 
independent gaze-estimation task.

However, this accuracy is still 

rather far from the one degree of vi-
sual angle achieved by established 
model-based gaze-estimation meth-
ods. Closing this performance gap will 
require further advances in computer 
vision and machine learning meth-
ods that are robust to the large vari-
ability of real-world settings. Other 
remaining research challenges are to 
seamlessly estimate attention from 
multiple systems, whether placed in 
the environment or worn on the body; 
to aggregate this information into a 
holistic, spatiotemporal record of user 
attention; and to estimate attention at 
scale—that is, jointly for several indi-
viduals or even large groups of people.

ATTENTION MODELING
Modeling shifts in overt visual atten-
tion over time, or visual behavior, di-
rectly builds on attention estimation. 
Visual behavior analysis is extensively 
studied in experimental psychology 
and the behavioral sciences—and more 
recently also in HCI. Previous work has 

shown that visual behavior is a rich 
source of information about users, such 
as their activities or daily routines.12 
Moreover, the link between visual be-
havior and cognition promises auto-
matic analysis of covert aspects of user 
state that are closely related to atten-
tion, such as cognitive load.13

Despite significant advances in an-
alyzing and understanding human 
visual behavior, most studies have fo-
cused on short-term visual behavior. 
To realize the vision of pervasive at-
tentive user interfaces, computational 
methods that analyze visual behavior 
over long periods of time in daily life, 
such as days or even weeks, are needed.

One of the biggest challenges for 
long-term attention modeling using 
head-mounted eye trackers is calibration 
drift: deterioration of gaze- estimation 
accuracy over time. Such drift can be se-
vere, even for hour-long recordings, and 
completely unpredictable—for example, 
if users temporarily remove the tracker 
or move it on their head.

(a) (a) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3. Estimating user attention in unconstrained everyday settings faces several challenges including (a, b) considerable variabil-
ity in user and background appearance, (c) directional lighting, (d−f) shadows and glare, and (g, h) users’ head pose and distance to 
the camera. Images j−l show best-case examples of state-of-the-art gaze-estimation accuracy in degrees of visual angle as well as 
predicted (Pred.) and ground-truth (GT) gaze vectors.
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Another key challenge is to contex-
tualize attentive behavior by consid-
ering users’ current overall situation, 
activities, and goals. This requires 
extending existing user models with 
models of the environment, avail-
able systems, and interactions among 
multiple users. Although attention is 
a core aspect of user modeling, it has 
yet to be examined in unconstrained 
everyday settings.14 Researchers have 
started to explore these areas, but 
achieving the ultimate aim of robust 
and multimodal analysis of long-term 
visual attention will take many years.

A s the number of displays we in-
teract with—on our own devices 
as well as in the environment— 

rapidly increases, managing user atten-
tion has emerged as a critical challenge 
for next- generation human−computer 
interfaces. Addressing the core issues 
of interruptions and continuous partial 
attention requires new computational 
methods to unobtrusively estimate and 
analyze the visual attention of large num-
bers of users over long periods of time in 
everyday settings across a multitude of 
diverse body-worn and ambient displays. 
If achieved, these pervasive attentive 
user interfaces will open up exciting new 
opportunities to not only optimize for 
user performance, but also interface us-
ability as well as user experience. 
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