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ABSTRACT

Physical activity, location, as well as a person’s psychophys-
iological and affective state are common dimensions for de-
veloping context-aware systems in ubiquitous computing. An
important yet missing contextual dimension is the cognitive
context that comprises all aspects related to mental informa-
tion processing, such as perception, memory, knowledge, or
learning. In this work we investigate the feasibility of recog-
nising visual memory recall. We use a recognition method-
ology that combines minimum redundancy maximum rele-
vance feature selection (mRMR) with a support vector ma-
chine (SVM) classifier. We validate the methodology in a
dual user study with a total of fourteen participants look-
ing at familiar and unfamiliar pictures from four picture cat-
egories: abstract, landscapes, faces, and buildings. Using
person-independent training, we are able to discriminate be-
tween familiar and unfamiliar abstract pictures with a top
recognition rate of 84.3% (89.3% recall, 21.0% false positive
rate) over all participants. We show that eye movement anal-
ysis is a promising approach to infer the cognitive context
of a person and discuss the key challenges for the real-world
implementation of eye-based cognition-aware systems.
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INTRODUCTION

Context-awareness has emerged as a key area of research in
ubiquitous computing [12]. Considerable advances in sens-
ing, inferring, and using context information were achieved
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by investigating different dimensions of context, such as phys-
ical activity [10], location [37], or the psychophysiological
and affective state of a person [20]. These common contex-
tual dimensions do not provide a complete picture of the con-
text of a person. An important yet not explicitly considered
dimension of context is the cognitive context of a person. Ac-
cording to the major research fields in experimental psychol-
ogy, we define the cognitive context to comprise all aspects
related to mental processing, such as perception, memory,
knowledge, and learning. We define a computing system as
cognition-aware if it is able to sense, infer, and adapt to the
cognitive context of its user.

Current context-aware systems have a hard time assessing
the cognitive context in an unobtrusive manner. This is due
to the fact that the cognitive context is encoded in complex
neural dynamics inside the brain and few obvious cues are
accessible by non-invasive measurement techniques. Cog-
nitive neuroscience uses techniques such as functional mag-
netic resonance imaging (fMRI, [8]) that are not suited for
real-world applications. More light-weight techniques poten-
tially useful to get at the cognitive context, such as electroen-
cephalography (EEG, [2]), are not (yet) unobtrusive and ro-
bust enough for use in mobile daily life settings.

In earlier work we introduced eye movement analysis as a
new modality for activity and context recognition [5, 6]. We
showed that the movement patterns the eyes perform during
different activities carry information that allows to recognise
the activities themselves [6]. A large body of research in
experimental psychology has evidenced that, in addition to
physical activity, visual behaviour is tightly linked to cogni-
tive processes, such as attention [26], relational memory [18],
learning [21], or saliency determination [22]. This link to
cognition makes eye movements a particularly promising
source of information on the cognitive context of a person
- beyond mere physical or visual activities.

To illustrate the vision of eye-based cognition-awareness con-
sider the following scenario: Attendees of a business recep-
tion wear eye trackers that are unobtrusively embedded into
their goggles. By analysing their eye movement patterns dur-
ing conversations, cognition-aware memory assistants run-
ning on their mobile phones assess whether the involved
speakers have met before and still remember each other. Us-
ing this information, the systems then automatically provide
real-time memory assistance about people fallen into obliv-
ion to prevent from embarrassing situations.



Although this example scenario is not novel per se, current
state-of-the-art approaches use image processing techniques
to detect whether two people have met before. The assis-
tant envisioned here goes beyond mere detection of conver-
sations or matching of faces to a database. Instead, it needs
to detect whether a person actually remembers having seen
somebody else before. For instance, let’s assume that an at-
tendee has met another person before. Consequently, a mem-
ory assistant using image processing would indicate that the
other person is “known”. The attendee, however, may still
not remember that other person. Thus, in our scenario, the
assistant is required to identify the process of visual mem-
ory retrieval. This can only be accomplished by extending
the current notion of context with a cognitive dimension that
reflects the attendee’s subjective appraisal of the situation.

Paper Scope and Contributions

As a first step towards our vision of eye-based cognition-
awareness, in this work we investigate the feasibility of using
eye movement analysis to recognise visual memory recall
processes of people looking at familiar pictures (that they
have seen before) or unfamiliar pictures (that they see for
the first time). The specific contributions are: (1) the intro-
duction of cognition-awareness and the cognitive context as
new paradigms in ubiquitous computing; (2) the introduc-
tion of eye movement analysis as a promising modality to
infer processes of visual cognition, here memory recall, of a
person; (3) the concept of a dual user study to investigate au-
tomatic recognition of one example cognitive process from
eye movements, namely visual memory recall; and (4) the
identification and discussion of the key challenges for the
real-world implementation of cognition-aware systems.

RELATED WORK

Eye Movement Analysis

Eye movement analysis has long been used as a tool to in-
vestigate visual behaviour. In an early study, Hacisalihzade
et al. used Markov processes to model visual fixations of ob-
servers looking at an object [17]. They transformed fixation
sequences into character strings and used the string edit dis-
tance to quantify the similarity of eye movements. Elhelw et
al. used discrete time Markov chains on sequences of tempo-
ral fixations to identify salient image features that affect the
perception of visual realism [15]. They found that fixation
clusters were able to uncover the features that most attract
an observer’s attention. Dempere-Marco et al. presented
a method for training novices in assessing tomography im-
ages [11]. They modelled the assessment behaviour of do-
main experts based on the dynamics of their saccadic eye
movements. Salvucci et al. evaluated means for automated
analysis of eye movements [32]. They described three meth-
ods based on sequence-matching and hidden Markov mod-
els that interpreted eye movements as accurately as human
experts but in significantly less time.

Eye Movements and Cognition

A growing number of researchers study eye movements in
natural environments to better understand the role the visual
system plays in the execution of everyday tasks [19]. Hu-
man vision research has shown that unconscious eye move-

ments are strongly related to the underlying cognitive and
perceptive processes. For example, it has been shown that vi-
sual behaviour is a good measure of visual engagement [34],
drowsiness [33], and cognitive load [35]. Heisz et al. inves-
tigated changes in eye movement behaviour across several
exposures to pictures of faces [21]. They found that as a face
became more familiar, observers looked longer and more of-
ten at the eyes and less often at the nose, mouth, or forehead.

Differences in eye movement patterns are also linked to a
number of mental disorders. It is for this reason that eye
tracking has been investigated for the diagnosis of disorders
on the autism spectrum (see [3] for a review). For exam-
ple, Klin et al. showed that people with autism tend to
show fewer fixations to the eyes but more fixations to the
mouth [24]. Similar links were found for schizophrenia [16]
as well as Parkinson’s [28] and Alzheimer’s disease [9].

All of these studies demonstrate the close link between vi-
sual behaviour and cognition and underline the potential of
eye movement analysis for assessing the cognitive context of
a person. While these studies analysed eye movements they
were purely descriptive in nature. They did not attempt to
automatically predict from the eye movements whether the
object of attention, such as a face, was previously seen and
remembered.

EYE MOVEMENT ANALYSIS

Wearable Eye Tracking

Developing sensors to track eye movements in daily life is an
active topic of research. Portable video-based eye trackers
- such as the Dikablis from Ergoneers or the iView X HED
from SensoMotoric Instruments - require auxiliary equipment
for the demanding video processing. The size of latest sys-
tems, such as the Glasses from Tobii Technology, is more
appropriate for mobile settings, however, these eye trackers
only allow for recordings over a couple of hours and do not
(yet) provide real-time processing and output. Electroocu-
lography (EOG) - the measurement technique used in this
work - is an inexpensive method for mobile eye movement
recordings; it is computationally light-weight and can be im-
plemented using on-body sensors [27, 4]. These character-
istics are crucial with a view to long-term eye movement
recordings with real-time feedback in daily life.

Electrooculography

The eye can be modelled as a dipole with its positive pole at
the cornea and its negative pole at the retina. Assuming a sta-
ble corneo-retinal potential difference, the eye is the origin
of a steady electric potential field. The process of measur-
ing changes in this field is called electrooculography. Using
two pairs of skin electrodes placed at opposite sides of the
eye and an additional reference electrode, two signal compo-
nents (EOGh and EOGv), corresponding to two movement
components - a horizontal and a vertical - can be identified.
If the eye moves away from the centre position, the retina
approaches one electrode while the cornea approaches the
opposing one. This change in dipole orientation causes a
change in the electric potential field and thus the measured



EOG signal amplitude. By analysing these changes, eye
movements can be tracked.

Eye Movement Characteristics

To use eye movement analysis for context-awareness, it is
important to understand the different types of eye movements.
In earlier work we identified three types that can be robustly
detected using EOG: saccades, fixations, and blinks.

Saccades

The eyes do not remain still when viewing a visual scene.
Instead, they have to move constantly to build up a mental
“map” from interesting parts of that scene. The main reason
for this is that only a small central region of the retina, the
fovea, is able to perceive with high acuity. The fast move-
ment of the eyes is called a saccade. The duration of a sac-
cade depends on the angular distance the eyes travel during
this movement: the so-called saccade amplitude.

Fixations

Fixations are stationary states of the eyes during which gaze
is held upon a specific location in the visual scene. Fixations
can also be defined as the time between each two saccades.

Blinks

The frontal part of the cornea is coated with a thin tear film.
To spread this fluid across the corneal surface, regular open-
ing and closing of the eyelids, or blinking, is required. The
average blink rate is influenced by environmental factors such
as relative humidity, temperature or brightness, but also by
physical activity [6], cognitive load [35], or fatigue [33].

EXPERIMENT

The experiment consisted of user studies: A main study to
record natural eye movements during visual memory recall
and a validation study to evaluate visual memory recall per-
formance of a second group of participants. The main study
was designed with two objectives in mind: (1) to elicit dis-
tinct eye movements by using a large screen and well-defined
visual stimuli, and (2) to record natural visual behaviour
without any active visual search or memory task by not ask-
ing participants for real-time feedback. The validation study
followed the same protocol as the main study but participants
were asked to provide real-time feedback on whether each
image had previously been shown. While the main focus of
the current work was on visual memory recall of faces, we
included additional picture categories for comparison and to
investigate the general applicability of our approach.

Apparatus

We created four picture sets, one set for each of the following
picture categories: abstract images, landscapes, faces, and
buildings. For the faces category, we manually selected 20
mixed-gender pictures (11 male, 9 female) from the CVL
Face Database1. We chose pictures with frontal view and
neutral expression; the face of the person was centred in the
picture (see Figure 1). Pictures in the other categories were

1Database is available online: http://lrv.fri.uni-lj.si/

facedb.html
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Figure 1: Experimental setup consisting of five electrodes
for EOG data collection (h: horizontal, v: vertical, r: ref-
erence). The participants’ eye movements were recorded
while seated in front of a screen in a dimmed office room.
No constraints with respect to movements of the upper body
or head were imposed.

randomly selected from the Internet. We ensured, however,
that these pictures had similar visual features. For example,
we selected landscape photographs that showed a lake as
their main feature; the building photographs always showed
skyscrapers centred in the picture. The pictures were shown
on a screen using a beamer resulting in a picture dimen-
sion of between 1x1 m and 1.5x1.5 m. A MATLAB script
was used to control the display of the pictures as well as to
ground truth annotate the experimental procedure.

For EOG data collection we used a commercial system, the
Mobi from Twente Medical Systems International (TMSI).
The device records a four-channel EOG with a joint sam-
pling rate of 128 Hz. The device was worn on a belt around
each participant’s waist and transmitted aggregated data via
Bluetooth to a laptop placed behind the participant.

EOG signals were picked up using an array of five 24 mm
Ag/AgCl wet electrodes from Tyco Healthcare placed around
the right eye (see upper left picture in Figure 1). The hori-
zontal signal was collected using one electrode on the nose
and another directly across from this on the edge of the right
eye socket. The vertical signal was collected using one elec-
trode above the right eyebrow and another on the lower edge
of the right eye socket. The fifth electrode, the signal ref-
erence, was placed away from the other electrodes in the
middle of the forehead. Five participants (three male, two
female) had to wear spectacles during the experiment. For
these participants, the nose electrode was moved to the edge
of the left eye socket to not interfere with the glasses frame.
Data recording and synchronisation was handled by the Con-
text Recognition Network (CRN) Toolbox [1].
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Figure 2: Example pictures from the four categories (ab-
stract, landscape, faces, and buildings) and their sequence
of display used in the experiment. Each picture was shown
for 10 seconds; pictures with Gaussian noise were shown in
between for five seconds.

Participants

We collected eye movement data from seven participants -
four male and three female - recruited from the lab. Partic-
ipants were between 25 and 29 years old (M = 26.4, SD =
1.6). Originally there were eight participants but one was
withdrawn due to bad EOG signal quality that prevented ro-
bust detection of eye movements. We made sure all partici-
pants were well rested and we confirmed that none of them
had seen pictures from the CVL database before.

Setup and Procedure

In contrast to [21], participants were only informed about
the measurement equipment before the experiment; neither
the purpose of the study nor any task were given to them.
This was to not influence their visual behaviour by engaging
them in an active visual search task. For the same reason, par-
ticipants were also not asked to provide real-time feedback
on whether they remembered each picture during the exper-
iment. Participants were seated in a dimmed office room
about 2 m in front of a screen facing its centre. Movements
of the upper body were allowed at any time but we encour-
aged the participants to sit still throughout the experiment
(see right picture in Figure 1).

Participants were asked to look at four continuous sequences
of pictures. Each sequence was randomly created from pic-
tures of a single picture category (see Figure 2). Within each
sequence, 12 pictures were presented only once; five others
were presented four times at regular intervals. This resulted
in a total number of 32 pictures for each sequence. We ran-

domised both the overall sequence as well as the selection of
the repeated pictures across participants. In contrast to [21]
we limited the exposure time for each picture to 10 seconds.
In between each exposure, a picture with Gaussian noise was
shown for five seconds as a baseline measurement and to al-
low the participants to relax. The total experiment time for
each participant was about one hour. At the end of each ex-
periment, the participants were asked on their experiences
on the procedure in a short questionnaire.

Validation Study

The validation study used the same picture sets and experi-
mental procedure as the main study. In contrast to the main
study, the pictures were shown on a laptop and no eye move-
ments were recorded from the participants. Instead, partic-
ipants were asked for real-time feedback on whether or not
each picture had been shown before by pressing two buttons
on the laptop’s keyboard. We collected feedback from seven
participants disjunct to those of the main study - four male
and three female - aged between 23 and 30 years (M = 26.9,
SD = 2.9).

METHOD

All methods used in this work were implemented offline us-
ing MATLAB and C++. In this section we first describe the
EOG signal processing algorithms and provide an overview
of the extracted eye movement features (an in-depth descrip-
tion of these algorithms and features is outside the scope of
this paper but can be found in [6]). We then introduce the
feature selection and classification algorithms, as well as the
parameter selection and training procedures.

Noise and Baseline Drift Removal

EOGh and EOGv were first stripped of high frequency noise
using a median filter. For baseline drift removal, we then per-
formed an approximated multilevel 1-D wavelet decomposi-
tion at level nine using Daubechies wavelets on each signal
component. The reconstructed decomposition coefficients
gave a baseline drift estimation. Subtracting this estimation
from the original signals yielded the corrected signals with
reduced drift offset (see [36] for further details).

Saccade Detection

In an earlier work we introduced the Continuous Wavelet
Transform - Saccade Detection (CWT-SD) algorithm [6].
Briefly, CWT-SD detects saccades by thresholding on the
continuous 1-D wavelet coefficient vector computed from
the de-noised and baseline drift removed EOGh and EOGv.
CWT-SD takes physiological saccade characteristics into ac-
count to increase the robustness of detection [14].

Fixation Detection

Our algorithm for fixation detection exploits the fact that fix-
ation points tend to cluster together closely in time. Thus,
by thresholding on the dispersion of these points, fixations
can be detected [38]. Based on the output of the CWT-SD
algorithm, dispersion and duration values are calculated for
each non-saccadic segment. If the dispersion is below a max-
imum threshold, and the duration above a minimum thresh-
old, a fixation is detected.



Blink Detection

Similar to the algorithm for saccade detection, the Contin-
uous Wavelet Transform - Blink Detection (CWT-BD) algo-
rithm uses thresholding of wavelet coefficients to detect blinks
in EOGv. In contrast to saccades, a blink is characterised by
a short sequence of two large peaks in the coefficient vec-
tor: one positive, the other negative. The time between these
peaks is much smaller than for saccades. Thus, blinks are
distinguished from saccades by applying a maximum thresh-
old on this time difference.

Analysis of Saccade Sequences

Visual attention while looking at faces is strongly attracted
by internal face features (eyes, nose, and mouth) as these
convey crucial information about face identity. When view-
ing unfamiliar faces observers were found to scan more di-
verse regions of a face compared to familiar faces [21]. This
suggests that eye movement features that capture the sequen-
tial nature of visual scanning behaviour contain useful infor-
mation for recognising memory recall processes.

To extract information about saccade sequences we used a
wordbook analysis. First, each saccade was encoded into a
discrete, character-based representation. A sliding window
of length l and a step size of one was used to scan the stream
of encoded saccades for saccade sequences. A saccade se-
quence is given by l successive characters. As an example
with l = 4, the sequence “LrBd” translates to large left (L)
→ small right (r) → large diagonal right (B) → small down
(d). These sequences were then collected in wordbooks and
analysed statistically. Each new sequence was added to the
corresponding wordbook Wbl; for a sequence already in-
cluded in Wbl its occurrence count was increased by one.

Feature Extraction and Selection

We considered the two-class recognition problem of discrim-
inating between pictures that were only seen once (class “non-
repeated”) and pictures that were seen several times (class
“repeated”) by the participants. We first removed all eye
movement data that belonged to Gaussian noise pictures. We
then assigned all picture instances (picture and correspond-
ing eye movement data) of all first and single exposures to
the “non-repeated” class (17 picture instances), and picture
instances of exposures two, three, and four to the “repeated”
class (15 picture instances).

Feature extraction was run on all picture instances separately
using a sliding window with window size Wfe and step size
Sfe. We extracted four groups of features from the detected
saccades, fixations, blinks, and wordbooks (see Table 1). The
features were calculated on both EOGh and EOGv. Features
calculated from saccadic eye movements made up the largest
proportion of extracted features. In total, there were 62 such
features comprising the mean, variance and maximum EOG
signal amplitudes of saccades, and the normalised saccade
rates. These were calculated for both EOGh and EOGv; for
small and large saccades; for saccades in positive or neg-
ative direction; and for all possible combinations of these.
We calculated five different fixation features: the mean and
variance of the EOG signal amplitude within a fixation; the

Group Features

saccade
(S-)

mean (mean), variance (var) or maximum
(max) EOG signal amplitudes (Amp) or
rate (rate) of small (S) or large (L), positive
(P) or negative (N) saccades in horizontal
(Hor) or vertical (Ver) direction

fixation
(F-)

mean (mean) and/or variance (var) of the
horizontal (Hor) or vertical (Ver) EOG
signal amplitude (Amp) within or length
(Length) of a fixation or rate of fixations

blink
(B-)

mean (mean) or variance (var) of the blink
duration or blink rate (rate)

wordbook
(W-)

wordbook size (size) or maximum (max),
difference (diff) between maximum and
minimum, mean (mean) or variance (var)
of all occurrence counts (Count) in the
wordbook of length (-lx)

Table 1: Naming scheme for the features used in this work.
For a particular feature, e.g. S-rateSPHor, the capital letter
represents the group - saccadic (S), blink (B), fixation (F)
or wordbook(W) - and the combination of abbreviations af-
ter the dash describes the particular type of feature and the
characteristics it covers.

mean and the variance of fixation duration; and the fixation
rate over window Wfe. For blinks, we extracted three fea-
tures: blink rate, as well as the mean and variance of the
blink duration. We used four wordbooks. This allowed us to
account for all possible eye movement patterns up to a length
of four (l = 4), with each wordbook containing the type and
occurrence count of all patterns found. For each wordbook
we extracted five features: the wordbook size, the maximum
occurrence count, the difference between the maximum and
minimum occurrence counts, and the variance and mean of
all occurrence counts. The resulting feature matrices were
combined to one large feature matrix per participant, each
comprising 32 picture instances.

For feature selection we chose a filter scheme over the com-
monly used wrapper approaches because of the lower com-
putational costs and thus shorter runtime. We use minimum
redundancy maximum relevance feature selection (mRMR,
[31]). The mRMR algorithm selects a feature subset of ar-
bitrary size S that best characterises the statistical properties
of the given target classes based on the ground truth labelling
(see [30] for the MATLAB implementation we used).

Classification and Performance Evaluation

For classification we chose a linear support vector machine
(SVM, see [25] for the C implementation we used). All pa-
rameters of the saccade, fixation, and blink detection algo-
rithms were fixed to values common to all participants. For
evaluation we followed a leave-one-person-out scheme: the
datasets of all but one participant were combined and used
for training (the “training set”); the dataset of the remaining
participant was used for testing (the “test set”). This was re-
peated for each participant. Feature selection was performed
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Figure 3: Mean recall and false positive rate (FPR) for the
different picture categories using an exposure time Texp =

10s. Error bars denote 95% confidence intervals.

solely on the training set. During the classification process
the size of the feature set for each leave-one-person-out it-
eration was optimised with respect to accuracy by sweeping
over S, Wfe, and Sfe. In addition, the prediction vector re-
turned by the classifier for each picture instance was reduced
to a single class label (“repeated” or “non-repeated”) using
majority voting.

RESULTS

Results for Each Picture Category

On average, participants from the validation study were able
to correctly identify pictures that had previously been shown
with an accuracy of 97.3% for abstract, 97.8% for landscape,
96.4% for faces, and 97.3% for building pictures. Given this
high accuracy, in the following analysis we assume that par-
ticipants in the main study perfectly remember a picture that
was shown before.

Based on the data recorded in the main study, Figure 3 sum-
marises the overall recognition performance using person-
independent parameters and training for each picture cate-
gory. The bars contrast true positive rate (recall) ( TP

TP+FN
)

to false positive rate (FPR) ( FP
FP+TN

), where TP, FP, TN and

FN represent true positive, false positive, true negative and
false positive counts, respectively. The figure shows that the
recognition system consistently achieves recall values above
85% with the highest recall of 92% for the building (FPR:
27.6%) and the lowest recall of 85.7% for the faces picture
category. The FPR is above 20% for all picture categories
with the highest FPR of 30.5% for the faces category and the
lowest FPR of 21.0% for abstract pictures (recall: 89.3%).

The results for each individual participant show a range of
differences in recognition performance (see Table 2). For
example, the highest recall result for the faces category is

93.8% (participants 3 and 4) but with a FPR of 46.7%. The
worst result was for participant 6, with 68.8% recall but a
FPR of only 13.3%. What can be seen from the table, how-
ever, is that for all categories the differences do not seem to
correlate to the gender of the person.

Further Analysis of the Faces Picture Category

With a view to the cognition-aware memory assistant out-
lined in the introduction we then analysed the results for the
faces picture category in more detail.

Eye Movement Features

We first analysed how mRMR ranked the features on each of
the seven leave-one-person-out training sets for the faces cat-
egory. The rank of a feature is the position at which mRMR
selected it within a set. The position corresponds to the im-
portance with which mRMR assesses a feature’s ability to
discriminate between classes in combination with the fea-
tures selected before it. Figure 4 shows the top 15 features
according to the median rank over all sets (see Table 1 for a
description of the type and name of the features). For each
feature the vertical bar represents the spread of mRMR ranks
for the seven training sets. The most useful features are those
found with the highest rank (close to one) for most training
sets, indicated by shorter bars. Note that some features are
not always included in the final result (e.g. feature 64 only
appears in four sets). Equally, a useful feature that is ranked
lowly might still improve a classification (e.g. feature 89 is
spread between rank two and 21, but is included in six sets).

This analysis reveals that most features are based on hori-
zontal and vertical saccades, e.g. 39 (sacc-EMRt), 24 (sacc-
varAmpLPHor), and 62 (sacc-propHorVer). Feature 67 (fix-
varLength, variance of fixation duration) is used by six sets,
four of which rank it highly. Feature 65 (bl-varLength, vari-
ance of blink duration) is selected for six out of the seven
sets, all of which give it a high rank. Three wordbook fea-
tures are in the top ranks, all of which were selected at least
four times and describe eye movements sequences of length
three and four: 89 (str-varCount-l4), 83 (str-diffCount-l3),
and 88 (str-diffCount-l4).

Analysis of Different Exposure Times

The analysis so far assumed a fixed exposure time Texp =

10s. A short exposure time is desired as this directly trans-
lates to a low latency of the recognition system. In addition,
10 seconds may be regarded as rather long for real-world
environments considering that looking at the faces of others,
for example while walking down a street, is a subtle visual
activity and may occur on a smaller time scale. In a labora-
tory setting, Hsiao et al. found that the best performance for
face recognition was achieved with only two fixations and
that performance did not improve with additional fixations
[23]. Based on the fixation durations reported there and typ-
ical physiological saccade characteristics, two fixations cor-
respond to about one second of exposure.

To analyse the influence of Texp on the recognition perfor-
mance we sweeped Texp = 10s, 5s, 3s, 2s, 1s. For exam-
ple for Texp = 3s, we only used the eye movement data



picture category P1 (m) P2 (m) P3 (f) P4 (m) P5 (f) P6 (m) P7 (f) mean std

abstract Recall [%] 81.3 87.5 87.5 93.8 100.0 87.5 87.5 89.3 5.9

FPR [%] 6.7 20.0 26.7 20.0 26.7 33.3 13.3 21.0 9.0

landscape Recall [%] 93.8 100.0 93.8 93.8 93.8 87.5 68.8 90.2 10.1

FPR [%] 40.0 33.3 46.7 13.3 6.7 46.7 6.7 27.6 18.2

faces Recall [%] 87.5 87.5 93.8 93.8 87.5 68.8 81.3 85.7 8.6

FPR [%] 26.7 20.0 46.7 46.7 26.7 13.3 33.3 30.5 12.7

building Recall [%] 93.8 75.0 93.8 93.8 100.0 87.5 100.0 92.0 8.6

FPR [%] 20.0 13.3 20.0 26.7 26.7 40.0 46.7 27.6 11.8

Table 2: Recall and false positive rate (FPR) for each participant and the mean and standard deviation over all. The table also
shows the participants’ gender (f: female, m: male). Best case results for each picture category are indicated in bold, worst
case results in italic.
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Figure 4: Top 15 eye movement features selected by mRMR for all seven training sets for the faces picture category. X-axis
shows feature number and group; the key on the right shows the corresponding feature names as described in Table 1; Y-axis
shows the rank (top = 1). For each feature, the bars show: the total number of training sets for which the feature was chosen
(bold number at the top), the rank of the feature within each set (dots, with a number representing the set count), and the median
rank over all sets (black star). For example, a useful feature is 67 (F) - a fixation feature selected for six sets, in four of which
it is ranked four or below; less useful is 28 (S) - a saccade feature used in only three sets and ranked between 11 and 20.

recorded during the first three seconds of each exposure for
classification. We calculated the recognition performance
again using person-independent parameters and training. As
can be seen from Figure 5 the exposure time considerably
influences the recognition performance. For Texp = 10s the
mean recall is 85.7% (FPR: 30.5%), whereas for Texp = 1s
the recall drops to 65.2% with a FPR of 34.3%. It is inter-
esting to note that Texp = 5s yields the best FPR of 21.9%
(recall: 77.7%) and while Texp = 3s yields the worst FPR
of 38.1% the recall only decreases to 83.9% compared to an
exposure time of 10 seconds.

DISCUSSION

Eye Movement Features

The mRMR-based feature ranking provides interesting in-
sights into the type of eye movement features that are useful
for assessing visual memory recall of faces (see Figure 4).
The saccade and wordbook feature groups were particularly
well represented in the study. This result confirms that in
addition to eye movement characteristics well-known in ex-
perimental psychology, such as the mean fixation duration,
saccades and saccade sequences carry useful information on
a person’s visual behaviour during memory recall tasks. Sim-
ilar to earlier results for eye-based activity recognition [6]
the best recognition performance was only achieved using a
mixture of features from different feature groups.
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Figure 5: Mean recall and false positive rate (FPR) for differ-
ent exposure times for the faces picture category. Error bars
denote 95% confidence intervals.

Blink features were less well represented in the top ranks.
This is most likely due to the short exposure time of only 10
seconds for which participants could not show much blink
rate variations as for example while looking at unpleasant vi-
sual stimuli [29]. Blink features may be found to be more dis-
criminative for longer duration activities, such as prolonged
visual search. In combination with the ease by which they
were calculated, we believe that blink features are still promis-
ing for future work on cognition-aware systems.

The same applies to the group of fixation features from which
only one feature, the variance of the fixation duration, was
selected in top ranks for six of the seven sets. It is interesting
to note that the mean fixation count - a feature found in [21]
to significantly change across exposures - was not among the
top 15 features in this study.

Recognition Performance

All parameters of the saccade, fixation and blink detection al-
gorithms were fixed to values common to all participants; the
same applies to the parameters of the feature selection and
classification algorithms. Using person-independent train-
ing, our recognition system achieved best average recall val-
ues of between 85.7% and 92%, and FPR of between 21%
and 30.5% for all four picture categories (see Figure 3). While
such a high FPR may not be problematic for certain use
cases, lower FPR are generally preferable and could, for ex-
ample, be achieved by using person-dependent parameters
and training.

The analysis of different exposure times revealed that while a
one second exposure yielded a recall well above chance, the
recall for three seconds was close to that of a full 10 second
exposure (see Figure 5). This lower bound is important for
a potential real-world implementation of a cognition-aware
memory assistant and may be further lowered by using eye

movement features and analysis methods particularly geared
towards recognition of visual memory recall.

Additional eye movement characteristics - such as pupil dila-
tion or microsaccades - that are potentially useful for recog-
nising visual memory recall or the other cognitive processes
mentioned before were not used here because of the diffi-
culty in measuring them with EOG. These characteristics are
still worth investigating in the future as they may carry infor-
mation that complements that available in the current work.

Experiment

To investigate the feasibility of inferring cognitive processes
from eye movements requires an experimental methodology
that is more similar to that used in experimental psychology
rather than in ubiquitous computing. Human vision exper-
iments typically involve controlled tasks with carefully de-
signed and timed visual stimuli. In contrast, ubiquitous com-
puting aims for real-world applications that involve uncon-
strained natural behaviour. Techniques from experimental
psychology can therefore not directly be adopted for ubiqui-
tous computing. As demonstrated here, a viable approach is
to first evoke and infer specific cognitive processes in a sim-
ilar but less controlled laboratory setting. The experimental
design and procedures can then be transferred and gradually
extended to cover more complex daily life situations.

In the experiment we faced a trade-off between natural visual
behaviour and user-annotated ground truth. We addressed
this trade-off by implementing a dual study design with two
different groups of participants. In the main study we did
not ask participants for real-time feedback on whether they
actually remembered each picture. This was to not involve
them in an active visual memory task that would have in-
fluenced their visual behaviour. In terms of evaluation, this
lack of user-annotated ground truth required the assumption
that the ground truth labels defined by the experimental pro-
cedure reflected the participants’ subjective experience. The
validation study showed that this assumption may not always
hold, i.e. some pictures had been shown before but were not
remembered by the participants. Participants’ consistently
high memory recall performance for all picture categories
in the validation study also showed, however, that this oc-
curred in only about 3% of the cases and had negligible in-
fluence on the participants’ performance in the main study.
We plan to compare the dual study design introduced in the
current work with other validation techniques such as post-
experiment questionnaires or analysis of video footage.

Toward a Real-World Implementation

While the initial results presented here are promising, there
are several challenges that we aim to address in future work
for a real-world implementation of the envisioned cognition-
aware memory assistant.

One of the key challenges for a real-world implementation is
the co-influence of (visual) task, situation, and cognitive pro-
cesses on a person’s eye movements. In laboratory settings
these influences can be minimised by using a constrained
experimental setup and well-defined visual stimuli. Every-



day settings can typically not be controlled in a similar fash-
ion. It is therefore crucial to identify and separate these dif-
ferent sources of influence for robust recognition of visual
memory recall and other cognitive processes. This problem
could be addressed by using a multi-modal approach for con-
text recognition and annotation that incorporates additional
modalities to eye tracking, such as proximity sensors, GPS
for localisation, inertial measurement units for head move-
ments, or eye contact sensors [13].

This leads to a second challenge. Personal encounters in
daily life differ considerably from the situation investigated
here. In these settings, facial expressions of conversational
partners change continuously, the viewpoint is dynamic, and
other visual stimuli may attract attention and lead to “ran-
dom” saccades to other entities in the surrounding environ-
ment. In addition, personal encounters may range from longer
face-to-face discussions between two people, over glances to
faces of others while in transit, to looking at several faces of
a group of people in succession. This will require advanced
methods for robust detection of when and how people look
at each other’s face. One part of a solution to this problem
is to augment the analysis of eye movement dynamics - as
presented here - with a computer vision system for face de-
tection and a wearable gaze tracker to identify the points in
time the person has looked at a face.

The current experiment involved participants to look at a
large screen to provoke distinct eye movements that could
easily be measured using EOG. It remains to be investigated
whether current wearable eye trackers - whether EOG- or
video-based - are accurate and robust enough to capture eye
movement characteristics that reflect visual memory recall
processes on smaller screens (e.g. on a mobile phone) or
with the person being in transit.

In the questionnaire participants one and two reported that
they got slightly bored and participants one, two, and five
reported of getting slightly tired while looking at the pic-
tures. Participants one, three, four, and seven also reported
of having lost concentration towards the end of the experi-
ment. These phenomena did not seem to have influenced the
recognition performance in the current experiment (see Ta-
ble 2). Given that blink duration was found to be a reliable in-
dicator of fatigue [7] and that its variance was a high-ranked
features for six of the seven training sets (see Figure 4) we
still believe that a fatigue detector may prove beneficial for
increasing the performance of a real-world implementation
of a cognition-aware memory assistant.

Finally, it will be interesting to see how social conventions,
such as not to look into the eyes of others for too long or not
to scrutinise the faces of others, will influence the available
time to analyse eye movements and therefore the recognition
performance of the memory assistant.

CONCLUSION

In this work we proposed cognition-awareness as a novel
paradigm to describe context-aware computing systems that
are able to sense and adapt to a user’s cognitive context. We

introduced eye movement analysis as a promising method to
assess the cognitive context in an unobtrusive manner. Us-
ing a dual user study we showed that visual memory recall
processes while looking at familiar and unfamiliar pictures
can be recognised from eye movements of seven participants
with decent performance. These initial results are promising
as the described approach may soon be applicable to other
stationary real-world setups, e.g. in a cognition-aware pic-
ture browser on a desktop computer. They also open up the
discussion on the wider applicability of the approach to other
cognitive processes and mobile daily life settings.
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Eye Movement Analysis for Activity Recognition
Using Electrooculography. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
33(4):741–753, 2011.

7. P. P. Caffier, U. Erdmann, and P. Ullsperger.
Experimental evaluation of eye-blink parameters as a
drowsiness measure. European Journal of Applied
Physiology, 89(3-4):319–325, 2003.

8. M. J. Chadwick, D. Hassabis, N. Weiskopf, and E. A.
Maguire. Decoding individual episodic memory traces
in the human hippocampus. Current Biology, 20(6):544
– 547, 2010.

9. T. J. Crawford, S. Higham, T. Renvoize, J. Patel,
M. Dale, A. Suriya, and S. Tetley. Inhibitory control of
saccadic eye movements and cognitive impairment in
alzheimer’s disease. Biological Psychiatry,
57(9):1052–1060, 2005.

10. N. Davies, D. P. Siewiorek, and R. Sukthankar. Special
issue: Activity-based computing. IEEE Pervasive
Computing, 7(2), 2008.



11. L. Dempere-Marco, X. Hu, S. L. S. MacDonald, S. M.
Ellis, D. M. Hansell, and G.-Z. Yang. The use of visual
search for knowledge gathering in image decision
support. IEEE Transactions on Medical Imaging,
21(7):741–754, 2002.

12. A. K. Dey. Understanding and using context. Personal
and Ubiquitous Computing, 5(1):4–7, 2001.

13. C. Dickie, R. Vertegaal, J. S. Shell, C. Sohn, D. Cheng,
and O. Aoudeh. Eye contact sensing glasses for
attention-sensitive wearable video blogging. In
Extended Abstracts of the ACM SIGCHI Conference on
Human Factors in Computing Systems, pages 769–770,
2004.

14. A. T. Duchowski. Eye Tracking Methodology: Theory
and Practice. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

15. M. Elhelw, M. Nicolaou, A. Chung, G.-Z. Yang, and
M. S. Atkins. A gaze-based study for investigating the
perception of visual realism in simulated scenes. ACM
Transactions on Applied Perception, 5(1):1–20, 2008.

16. U. Ettinger, M. Picchioni, M.-H. Hall, K. Schulze,
T. Toulopoulou, S. Landau, T. J. Crawford, and R. M.
Murray. Antisaccade performance in monozygotic
twins discordant for schizophrenia: The maudsley twin
study. American Journal of Psychiatry,
163(3):543–545, 2006.

17. S. S. Hacisalihzade, L. W. Stark, and J. S. Allen. Visual
perception and sequences of eye movement fixations: a
stochastic modeling approach. IEEE Transactions on
Systems, Man and Cybernetics, 22(3):474–481, 1992.

18. D. E. Hannula and C. Ranganath. The eyes have it:
Hippocampal activity predicts expression of memory in
eye movements. Neuron, 63(5):592 – 599, 2009.

19. M. M. Hayhoe and D. H. Ballard. Eye movements in
natural behavior. Trends in Cognitive Sciences,
9(4):188–194, 2005.

20. J. Healey, L. Nachman, S. Subramanian, J. Shahabdeen,
and M. Morris. Out of the lab and into the fray:
Towards modeling emotion in everyday life. In Proc. of
the 8th International Conference on Pervasive
Computing, pages 156–173, 2010.

21. J. J. Heisz and D. I. Shore. More efficient scanning for
familiar faces. Journal of Vision, 8(1):1–10, 2008.

22. J. M. Henderson. Human gaze control during
real-world scene perception. Trends in Cognitive
Sciences, 7(11):498–504, 2003.

23. J. H.-w. Hsiao and G. Cottrell. Two fixations suffice in
face recognition. Psychological Science,
19(10):998–1006, 2008.

24. A. Klin, W. Jones, R. Schultz, F. Volkmar, and
D. Cohen. Visual fixation patterns during viewing of
naturalistic social situations as predictors of social
competence in individuals with autism. Archives of
General Psychiatry, 59(9):809–816, 2002.

25. C.-J. Lin. LIBLINEAR - a library for large linear
classification, 2008.
http://www.csie.ntu.edu.tw/˜cjlin/liblinear/.

26. S. P. Liversedge and J. M. Findlay. Saccadic eye
movements and cognition. Trends in Cognitive
Sciences, 4:6–14, 2000.

27. H. Manabe and M. Fukumoto. Full-time wearable
headphone-type gaze detector. In Extended Abstracts of
the ACM SIGCHI Conference on Human Factors in
Computing Systems, pages 1073–1078, 2006.
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