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Abstract—Existing gaze-based methods for user identification
either require special-purpose visual stimuli or artificial gaze
behavior. Here, we explore how users can be differentiated by
analyzing natural gaze behavior while freely looking at images.
Our approach is based on the observation that looking at different
images, for example, a picture from your last holiday, induces
stronger emotional responses that are reflected in gaze behavior
and, hence, are unique to the person having experienced that
situation. We collected gaze data in a remote study (N = 39)
where participants looked at three image categories: personal
images, other people’s images, and random images from the
Internet. We demonstrate the potential of identifying different
people using machine learning with an accuracy of 85%. The
results pave the way for a new class of authentication methods
solely based on natural human gaze behavior.

I. INTRODUCTION

The ongoing pursuit of balancing usability and security
within authentication systems remains a persistent focus in
both academic research and industrial applications. Experts
in security often pinpoint users as a weak link due to their
propensity for creating insecure passwords [1]. In response,
researchers have proposed various authentication methods,
including biometric authentication [2], implicit authentica-
tion [3], and continuous user authentication [4], aiming to
enhance both usability and security. Despite these advance-
ments, many authentication techniques encounter vulnerabili-
ties such as shoulder surfing [5], lunchtime attacks [6], thermal
attacks [7], smudge attacks [8], or spoofing attacks [9].

One way to address these challenges is adding an identifica-
tion step to grant access to devices, even when the unlock token
is known, referred to as a two/multi-factor authentication. Two
general approaches exist: explicit and implicit multi-factor
authentication. Regarding explicit approaches, both commer-
cial (e.g., using one-time security token devices or sending

Fig. 1: We propose using eye gaze behavior during photo
viewing as an implicit identification technique, using existing
background images on smartphones, tablets, laptops, and PCs.
We hypothesize that users’ gaze behavior differs for the same
photograph, depending on their relationship with the photo.

email notifications) as well as so far purely academic (e.g., by
relying on tangible objects [10]) solutions exist. Approaches to
implicit multi-factor authentication include identification from
behavioral cues during usage, including the gait cycle [11],
browsing history [12], physical location [13], and eye-gaze
behavior during different tasks [14].

While eye-gaze tracking has become increasingly preva-
lent through smartphone front cameras and laptop webcams,
its application often necessitates task initiation alongside
the identification process, potentially delaying identification.
Moreover, gaze-based identification typically relies on suitable
stimuli [15] or artificial gaze behavior [16].
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A particularly promising, so far unexplored stimulus is
photographs, encapsulating personal memories, events, and
moments. People’s relationships with these images are diverse,
evoking distinct emotions and consequently eliciting different
eye movements. These movements carry multifaceted informa-
tion about individuals [17], including age [18], gender [19],
emotional state [20], and even identification [21].

We explore the concept of employing gaze behavior as
an implicit user identification modality during photo viewing.
The primary goal is to incorporate this approach as an iden-
tification step before authentication, e.g., through leveraging
the presence of a lock screen photo on personal devices. In
our approach, we investigate users’ gaze behavior on several
photo categories, namely, 1) personal photos, 2) photos of other
unknown individuals, and 3) photos from the internet. More-
over, we study image importance and repetition effect on users’
gaze behavior. Our results show that users’ gaze behavior is
significantly influenced by users’ personal relationship with the
displayed photos. Furthermore, we observed alterations in gaze
behavior with repeated photo exposure, yet individual gaze
patterns retained their uniqueness. Our findings enable a new
approach for user identification using natural gaze behavior. To
the best of our knowledge, this is the first attempt to investigate
user identification from natural gaze behavior while viewing
photos.

Contribution Statement. Through this work, we make the
following contributions: First, we analyze eye gaze behavioral
data collected in an uncontrolled environment while looking at
photographs and images of three different categories, exploring
familiarity, repetition, and importance. Second, we contribute
person-dependent machine learning classifiers on gaze data and
propose directions for future research on user identification.

II. RELATED WORK

Our work draws from prior work on (1) Implicit user
identification techniques, (2) Gaze-based Authentication, and
(3) Eye Gaze behavior and Image viewing.

A. Implicit User Identification

Implicit user identification and authentication approaches
were introduced over a decade ago by Jakobsson et al. [3].
They explain that the concept of implicit authentication can
be used as a primary or secondary authentication scheme, on
any type of device that collects user behavioral and contextual
information [3]. Implicit authentication mechanisms do not
only authenticate the user one time, but also analyze user
behavior collected from sensor and usage data during a specific
time span to be able to continuously authenticate the user,
and hence reduce re-authentication workload [4], [22]. This
concept has been further explored and expanded, and various
systems have been built to use information such as typing
biometrics [23]–[25], eye gaze tracking [26], gait [11] or a
combination of multiple behavioral information sources (e.g.,
[4]). Notable comprehensive literature reviews of implicit and
continuous authentication techniques include Khan et al. [27],
Bo et al. [4], and most recently [28].

B. Gaze and User Identification

Different aspects of authentication using eye-gaze were
explored over the years [29]. Researchers have introduced
several ways where eye-gaze can be used for explicit [16], [30],
implicit [26], [31], Biometric [32] multi-factor [33]–[35], and
continuous authentication [36]. For example, Kasprowski et al.
examined user identification by measuring the eye’s reaction to
different visual stimuli [37]. In 2005, Bednarik et al. proposed
using eye movements as a biometric [38]. Although there
are still privacy concerns [39], the identification accuracy is
relatively high due to gaze biometric features. Moreover, re-
searchers attempted to integrate gaze-based user identification
into daily tasks. For example, Abdulin et al. [40] explored the
feasibility and accuracy of using eye movements as biometrics
while users are reading [40], Iqbal et al. investigated eye gaze
while searching [14], and Eberz et al. explored gaze behavior
during watching videos [41]. Moreover, recent work points
to the potential of eye gaze for interventions that increase
password strength [42] and reduce password reuse [43].

C. Eye Gaze behavior and Images

Gaze behavior varies depending on the task or activity. For
example, Kosch et al. [44] found higher deviations of gaze
points for a trajectory during smooth pursuit eye movements
when the users are doing an N-back cognitive task. Iqbal et
al. [45] showed the possibility of detecting the user’s tasks
(e.g., reading, mental reasoning) by using eye gaze patterns as
each task has a unique signature of eye movements. Visual
tasks, such as viewing photographs and images, have also
been shown to impact eye movements. Moss et al. showed
that eye movements differ between genders during natural
image viewing [19]. Cantoni et al. [15] showed that people
look at photographs differently, and distinctive features may
be extracted while viewing photographs that can be used as a
soft biometric. The authors used greyscale face images. They
found that users looked differently at the faces, which can be
a distinctive feature for user identification. The authors also
highlighted that using different images, such as landscapes and
abstract images, can improve the recognition rate [15]. Yun et
al. showed that a person’s gaze behavior while freely viewing a
scene contains a lot of information, not only about users’ intent
and what they consider as important in the scene but also about
the scene’s content [46]. Gomez et al. found differences in
gaze behavior based on participants’ gender, age, and repeated
exposure to the stimuli [47]. Massaro et al. found differences
in gaze behavior during exposure to different art genres, in-
cluding natural scenes and paintings with human subjects [48].
Researchers also found differences in gaze behavior when
viewing images depending on participants’ physical attraction
to the photos [49] and image complexity [50].

D. Summary

Implicit authentication and identification techniques show
a lot of promising potential for increased security and good
usability. Gaze behavior can be used alone or in combination
with other techniques for implicit identification. However, gaze
behavior mostly requires unnatural stimuli. We fill this gap by
proposing a concept for using natural eye gaze elicited during
viewing photographs and images for implicit authentication.
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III. CONCEPT AND RESEARCH QUESTIONS

Leveraging findings from prior work introduced in the
previous section that showed that different categories of images
elicit different eye movement behaviors, we aim to explore the
identification of users by analyzing their gaze behavior while
freely viewing photos. This work has two main objectives
1) investigating the various factors influencing users’ gaze
behavior—such as photo category, importance, and repetition,
and 2) constructing a model for user identification based on
these patterns. In addition, an important objective of our study
was to conduct it in an ecologically valid remote setting. To
this end, we also chose sensors that can be employed in the
users’ vicinity rather than requiring users to be augmented with
on-body sensors.

Our main hypothesis is that individuals exhibit unique
gaze behavior when observing the same photo due to having
different relationships or memories with the photos. This was
highlighted in prior work as participants felt attached to image
elements that had a certain memory with [51]. Throughout our
research, we aim to answer two key research questions: RQ1:
How well can we identify individuals based on their implicit
gaze behavior during photo viewing? We investigate several
aspects namely 1) photo category, 2) photo importance, and
3) photo exposure repetition. RQ2: Does photo importance
and repeated exposure to the same photo change users’ gaze
behavior? In the following, we describe our data collection
methodology to explore these research questions.

IV. DATA COLLECTION

A. Study Design

To investigate users’ gaze behavior while viewing photos,
we designed a remote within-subjects study for gaze data
collection, consisting of two phases: Phase 1–photo collection;
and Phase 2–recording and acquiring gaze data.

In phase 1, we asked participants to upload a selection of
10 personal photos: ‘Choose 10 photos that you would like to
be included in your annual yearbook, five of which could also
be designated for printing out’. The yearbook scenario served
as a prime to make participants think of choosing photos for
this significant keepsake and historical record, documenting
one’s events. The printing allowance acts as an indicator of
photo importance. Participants were then prompted to rate the
importance of each photo on a scale from 1 (least important) to
10 (highly important) and provide reasons, such as connections
to special events, individuals, or places.

In phase 2, participants were exposed to 30 distinct photos.
Each photo was shown three times, based on a Latin square, to
study the repetition effect. Images were shown for 5 seconds.
The selection of 5 seconds aligns with the literature, suggesting
that the optimal duration for displaying photos is between 4
to 6 seconds before participants lose focus [52]. During this
phase, participants viewed 1) their uploaded photos, 2) others’
photos (personal photos provided by the authors), and 3) 10
photos sourced from the Internet (showing worldwide tourist
destinations). The study had 3 independent variables: 1) photo
category, 2) photo importance 3) repetition; and one dependent
variable which is gaze features. We also captured participants’
screen resolution and displayed image resolution.

Approval for the study was obtained from the University
ethics board. The study call emphasized the need to temporar-
ily store participant photos on University servers.

B. Recruitment

The recruitment for the study was conducted through
multiple channels, including dissemination through the Uni-
versity mailing lists and social media platforms. The call for
participation directed potential participants to a website where
they could provide their consent for data collection and storage.
Upon consenting, participants could upload their photos.

C. Apparatus

To obtain valid gaze data, we conducted the study remotely.
We utilized the Gazerecorder API1 with a frame rate of 33 Hz.
The GazeRecorder API is designed explicitly for Webcam-
based eye-tracking, integrated within web browsers. We imple-
mented a website using HTML, CSS, and Javascript, hosted
on our University server, where we integrated the eye tracker
code, collected photos, and displayed tasks and questionnaires.

D. Procedure

Upon clicking the study link, participants were guided to
complete the consent and demographics forms. Subsequently,
they progressed to phase 1, tasked with uploading 10 pho-
tos, assigning importance ratings, and providing reasons for
their choices. Transitioning to phase 2, participants began
with eye tracker calibration and were then prompted to view
the displayed photos freely. Following each photo display, a
greyscale photo appeared for 2 seconds, acting as a separator
and establishing a baseline for eye gaze data.

Participants then proceeded to an accuracy test, assessing
the precision of their eye gaze data accuracy upon concluding
the study. Subsequently, participants were prompted to com-
plete a post-study questionnaire asking about their experiences
with eye trackers and eye fatigue. The study duration was appr.
40 minutes (20 minutes per phase). Participants were compen-
sated with 15 Euros. Figure 2 depicts the study procedure.

E. Limitations

Our study has several limitations. Although we explicitly
specified the requirement for participants to be seated in a well-
lit, quiet environment without interruptions, we encountered
challenges in ensuring these conditions. To address these
uncontrollable factors, during the data cleaning phase, we
implemented measures to mitigate their impact (discussed in
detail in section VI). Specifically, we assessed the accuracy
of eye tracking. Any datasets exhibiting evident discrepancies
or incomplete results were consequently removed from our
analysis to enhance data integrity and reliability. Another
limitation is testing the repetition effect in a short time frame.
Future work should look into gaze behavior over longer peri-
ods. Finally, it is important to highlight that the classification
accuracy is bound to gaze data accuracy which is limited
by the camera’s framerate. Although eye tracking accuracy is
affected by several conditions such as light, we still achieved
a relatively good accuracy, however, it could be enhanced by
using a high frame rate eye tracker.

1https://gazerecorder.com/, last accessed Nov. 17, 2023
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Fig. 2: Study Procedure with the two phases depicted

V. FEATURES AND CLASSIFICATION APPROACH

We describe our step-by-step process to understand eye
gaze behavior while viewing different photo categories with the
ultimate goal of identifying users based on their gaze behavior.
First, we extracted gaze features, required for classification and
tested their statistical significance. Second, we built and tested
different classifiers based on these features. Finally, we imple-
mented an identification classifier leveraging a comprehensive
set of combined features across all photo categories.

A. Feature Extraction

We extracted 10 low-level gaze features from the raw gaze
data, inspired by the literature [53], [54] to characterize gaze
behavior during photo viewing effectively. Additionally, we
identified Areas of Interest (AOI) by leveraging visually salient
regions. To extract these AOIs, we employed the Shreelock et
al. [55] algorithm based on the Graph-Based Visual Saliency
(GBVS) model. This approach enables identifying which can
predict fixations on photos with superior performance to the
original visual saliency algorithm [51], [56].

• Fixation count: Number of fixations performed dur-
ing single photo viewing.

• Fixation duration: Time for which users dwelled with
their eyes on the stimuli.

• Average fixation duration: The sum of the duration
of all the fixations divided by the sum of fixations.

• Average saccadic duration: The saccadic duration
is calculated by subtracting the timestamps of two
consecutive fixations per photo.

• Average saccadic length: The average distance be-
tween two fixations per photo.

• AOI Fixation count: Count of fixations performed
during single photo viewing in all salient areas.

• AOI Fixation duration: Time for which users
dwelled on the stimuli in all salient areas.

• AOI Average fixation duration: The sum of the
fixations’ duration divided by the sum of fixations for
all salient areas.

• AOI Average saccadic duration: The saccadic du-
ration is calculated by subtracting the timestamps of
two consecutive fixations for all salient areas.

• AOI Average saccadic length: The average distance
between two fixations for all salient areas per photo.

B. Classification Approach

Our classifiers correlate a feature vector computed from a
time window of data to construct a user identification classifier.
Initially, we built three classifiers to explore potential variations
in users’ gaze behavior across distinct, independent variables:
1) photo category (personal, others’, and general), 2) photo
importance (important vs. unimportant), and 3) repetition (first-
time vs. repeated). We report the average and highest AUC.

All classifiers operate on a user-dependent basis, focusing
on unique gaze behavior. We analyzed three types of features:
1) overall photo features, 2) AOI features, and 3) combined
features. The comparison involved assessing two commonly
utilized classifiers in existing literature [57], [58]: Support Vec-
tor Machines (SVM), and Random Forest (RF). We empirically
fine-tuned the hyperparameters for optimization using a limited
set of values.

The classifiers for photo category, importance, and repe-
tition were individually trained on each user’s data. The data
was initially cleaned by removing outliers, followed by feature
computation for gaze behavior. Outliers were removed using
the z-score algorithm, which eliminates data points beyond
three times the standard deviation [59]. The photo importance
classifier was only trained on user’s personal photos labeled
for printing and non printing as indications of importance.
Subsequently, the data was split into training and test sets
(employing the leave-one-out approach) and underwent 5-
fold cross-validation. The resulting best and average AUC
scores were recorded for all participants across all classifiers.
Finally, the identification classifier is then built on data from
all participants and all features.

VI. RESULTS

We present and analyze the collected data from our study.
We start with data cleaning and pre-processing. Then, we
present a data overview, a statistical analysis of the computed
gaze features, and finally, the classification results.

A. Participants

We recruited 44 participants (20 females) aged between
20 and 42 (M = 25.9, SD = 4.6). Participants had different
nationalities, and the majority were students (35). Our partic-
ipants had computing science, psychology, business adminis-
tration, and engineering backgrounds. Finally, our participants
were novice eye tracker users (1.2 on a scale from 1=novice
to 5=experienced).
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TABLE I: Friedmann tests for gaze features while participants view photos with different category levels, namely their own
photos, others’ photos, and general photos from the internet (significant results in bold, P < .05).

Gaze Features Own Photos Others’ Photos Generic Photos Friedmann
F, P

Fixation Count M = 6.9, SD = 1.8 M = 7.1, SD = 1.7 M = 6.9, SD = 1.6 1.039, >.05
Fixation Duration M =1714.2, SD = 638.5 M = 1741.2, SD = 528.6 M = 1609.2, SD = 488.6 5.751, = .008
Avg Fixation Duration M = 263, SD = 72 M = 256, SD = 47.3 M = 243, SD =38.8 2.647, >.05
Avg Saccadic Duration M = 1780.8, SD = 477.5 M = 1701.1, SD = 440.1 M = 1834.8, SD = 366.5 1.346, >.05
Avg Saccadic Length M = 552.5, SD = 440.8 M = 537.3, SD = 427.7 M = 525.6, SD = 432.3 2.463, >.05
AOI Fixation Count M = 2, SD = 1.6 M = 1.8, SD = 1.5 M = 1.9, SD = 1.4 .401, >.05
AOI Fixation Duration M = 529.6, SD = 466.8 M = 487.1, SD = 438.2 M = 493.1, SD = 394.2 .365 >.05
AOI Avg Fix Duration M = 99.4, SD = 59.8 M = 100.9, SD = 60.6 M = 102.1, SD = 65.7 .039, >.05
AOI Avg Saccadic Duration M = 616.7, SD = 391.7 M = 572.6, SD = 334.6 M = 629, SD = 401.8 .424, >.05
AOI Avg Saccadic Length M = 133.5, SD = 91.1 M = 135.8, SD = 81.7 M = 151.4, SD = 86.8 .905, >.05

B. Data Cleaning and Pre-Processing

Our data cleaning is based on two aspects: 1) eye-tracking
failure and accuracy test results. We observed numerous in-
stances of missing gaze data among participants, possibly
indicating interruptions during the study or the presence of an
overlay screen that disrupted gaze recording. Consequently,
we had to exclude five participants due to insufficient gaze
data, leading us to conduct subsequent analyses with a reduced
cohort of 39 participants.

For the accuracy test results, following Tobii’s guide-
lines [60] for eye gaze accuracy testing, which shows that
the accuracy value should not exceed 1 degree (i.e., the
gaze point should not deviate more than 55 pixels from the
target center), we conducted accuracy assessments. Detailed
calculations are outlined in Abdrabou et al. [57]. All the
remaining 39 participants exhibited satisfactory accuracy test
results, eliminating the need for further data removal.

In our data pre-processing phase, we eliminated outliers
using the z-score algorithm, as explained earlier. Additionally,
we implemented data normalization to standardize all features
within the same range, thereby reducing data dimensional-
ity [61]. This normalization procedure ensured all features
were brought to a consistent magnitude level for analysis.

C. Data Overview and Gaze Data Analysis

For the data overview, we used webcams as eye trackers.
The data collection sampling rate was 33 frames per second.
This led to the collection of 2970 frames per user and 115k
eye-tracking data frames from all our participants.

To investigate users’ gaze behavior, we first start with
statistical analysis. Below, we reflect on the statistical anal-
ysis of gaze behavior while photo viewing. Our data were
non-normally distributed (confirmed by Shapiro-Wilk and
Anderson-Darling tests). Hence, unless otherwise stated, we
perform non-parametric tests and report on mean values (M).

1) Photo Category Statistical Results: For photo cate-
gories, a Friedman test showed a statistically significant ef-
fect of the photo category only on users’ fixation duration
(χ2(37) = 10.595, P < .05). Using the Wilcoxon pairwise
test with Bonferroni correction showed a statistically signifi-
cant difference between users’ fixation duration on their own
photos (M = 21714.30;SD = 638.505), others’ photos

(M = 1741.22;SD = 528.62), and general photos (M =
1609.28;SD = 488.67); see Table I. This indicates that par-
ticipants spend less time viewing their own photos than when
they view others’ or general photos. Utilizing the Wilcoxon
signed-rank test with Bonferroni correction, we identified a
statistically significant difference in the pairwise comparison
between viewing one’s own photo (M = 1714;SD = 638)
and viewing general photos (M = 1609;SD = 488.6), with a
significance level of p < .05. Although other aspects lack sta-
tistical significance, they offer insights into user behavior. The
table shows that when users view their own photos, they tend
to have fewer but longer fixations. Additionally, they exhibit
longer eye movement distances, indicating a more skimming
visual behavior compared to the other photo categories [62].

2) Photo Importance Statistical Results: For photo im-
portance, a Wilcoxon test with Bonferroni correction showed
no statistically significant effect of photo importance on eye
gaze behavior; see Table II. From the table, we can see that
participants had longer fixation durations, extended saccadic
durations, and shorter distances when observing important
photos. These patterns suggest a tendency towards scrutinizing
the photos more closely [62].

3) Photo Repetition Statistical Results: To illustrate the
repetition effects, Figure 3 shows an example of the gaze
path of one user while looking at their own image over three
repetitions (top three figures), when looking at others’ images
(middle three figures), and when looking at general images
(bottom three figures). As we can see, the user’s gaze path is
very similar over repetitions when looking at their own images,
whereas, when looking at others’ images, the user first starts by
scanning larger areas of the image in the first repetition, then
focusing on particular areas in subsequent repetitions as they
become more familiar with it. The user’s gaze is sporadic when
looking at general images, and the scan path is different in each
repetition. However, these images do not illustrate the variation
in the fixations and only show the gaze scan path, which looks
similar from an abstract view. However, the features differ, e.g.,
fixation duration, fixation count, saccadic length, etc.

Looking at the overall effect of repetitions on all partici-
pants, we found a statistically significant effect of the repetition
on the overall photo features, meaning that users change their
gaze behavior when seeing the same photo more than once.
However, we could not find a statistically significant effect
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TABLE II: Wilcoxon signed-rank tests with Bonferroni correction for gaze features while participants viewed photos with different
importance levels, namely important vs. unimportant (significant results in bold, P < .05).

Gaze Features Important Photos Unimportant Photos Wilcoxon
Z, P

Fixation Count M = 6.9, SD = 1.6 M = 6.9, SD = 1.76 -.039, >.05
Fixation Duration M = 1669.8, SD = 540.1 M = 1739.4, SD = 642.2 -1.195, >.05
Avg Fixation Duration M = 250.7, SD = 41.9 M = 272.3, SD = 103.2 -.549, >.05
Avg Saccadic Duration M = 1793.1, SD = 389.1 M = 1718.8, SD = 522.3 -.196, >.05
Avg Saccadic Length M = 537.8, SD = 448.1 M = 539.2, SD = 438.8 -1.489, >.05
AOI Fixation Count M = 1.9, SD = 1.4 M = 2.4, SD = 1.8 -1.489, >.05
AOI Fixation Duration M = 500.6, SD = 414 M = 644.6, SD = 639.9 -1.705, >.05
AOI Avg Fix Duration M = 101, SD = 55.9 M = 116.1, SD = 90.1 -.803, >.05
AOI Avg Saccadic Duration M = 621, SD = 329.7 M = 697.4, SD = 518.9 -.647, >.05
AOI Avg Saccadic Length M = 141.3, SD = 77.3 M = 157.6, SD = 107.6 -.823, >.05

of the repetition on users’ gaze behavior features inside the
areas of interest, indicating that users tend to have similar eye
movements inside saliency areas. However, this needs further
investigation; see Table III for statistical results.

The table further demonstrates that participants exhibit a
decrease in the number and size of fixations, accompanied by
longer saccades and increased gaze distance across repetitions.
This shift might suggest a transition in their visual behavior
from scrutinizing to skimming as they become more familiar
with the photos over time [62].

D. Classification Results

We compared the performance of two different models:
Support Vector Machine (SVM) and Random Forest (RF).
We conducted four classifications: 1) photo category classifier,
2) photo importance classifier, 3) photo repetition classifier,
and 4) user identification classifier. We ran each of them on
1) photo generic features, 2) saliency areas features, and 3)
combined features. Below, we reflect on each. Scores reported
below are the average individual scores across all folds.

1) Photo Categories Classifier: Table IV presents the dis-
tinct classification outcomes for the photo categories classi-
fier. Our investigation revealed that the random forest model
achieved higher accuracy on an individual user level (91%).
Given the highly subjective nature of photo perception, we
prioritize classifiers delivering consistently high accuracy for
individuals. Our findings indicate that, within the random
forest classifier, the saliency area features (91%) demonstrated
higher classification accuracy compared to both generic photo
features (40%) and combined features (33%). Similar results
were also found within the SVM classifier accuracies. Note,
that all results surpassed the classifier baseline. In our compari-
son across three categories within the classifier, we adjusted the
baseline to 33.3%, and all outcomes exceeded this threshold.

Additionally, Figure 4 showcases a detailed breakdown
of classification results per user. This figure emphasizes the
AUC (Area Under the Curve) specifically for the random
forest classifier utilizing saliency area features due to its better
accuracy. It is important to note that due to insufficient data,
certain participants’ classifiers could not be trained, resulting in
the absence of 5 participants in our analysis. The figure further
demonstrates the substantial individuality in photo viewing
and its impact on classification results. These outcomes vary

widely, showcasing instances of high accuracy reaching up to
100%, while in contrast, some, like participants 16 and 22,
barely reach the baseline.

2) Photo Importance Classifier: To understand gaze behav-
ior while viewing (un)important photos, we ran ML classifiers
only on the participants’ own uploaded photos and not all seen
photos. In our assessment of the photo importance classifier,
we discovered that random forest outperformed SVM regard-
ing individual and average accuracy. We analyzed the features
and found that generic features had slightly higher average
accuracy across participants than salient areas.

We additionally examine the individual classification accu-
racy illustrated in Figure 5. Given the high accuracy demon-
strated by the random forest model, we reflect on individ-
ual classifiers within the RF model, specifically focusing on
generic features, which exhibit a higher average accuracy. The
visual representation in the figure indicates that the classifi-
cation between important and unimportant is mostly accurate
across most participants. Nevertheless, certain participants, like
participant 15, exhibit lower classification accuracy due to
individual variability.

3) Photo Repetition Classifier: Looking at the photo rep-
etition classification results (cf., Table VI), the RF provided
higher accuracy (88%) than SVM (63%) on individual levels
and averages. We also found that saliency features provided
higher accuracy within the RF model than other features. This
finding was inconsistent in the SVM model, where generic
features yielded higher accuracy. In our comparison across
categories within the classifier, we adjusted the baseline to
33.3%

To explore individual variances, Figure 6 displays individ-
ual AUC results for the RF classifier utilizing saliency features,
which yielded the highest accuracy. Due to limited data,
classifiers for two participants could not be trained, leading
to their exclusion from our analysis. The figure highlights
individual disparities in users’ gaze patterns concerning photo
repetition. For instance, participant 8 exhibits distinct gaze be-
havior, indicating a different gaze trajectory across repetitions,
presumably due to familiarity with the photo. On the other side,
participants 2, 29, and 34 display almost identical behavior
in their gaze patterns when repeatedly viewing the picture 3
times.
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Rep 1 Rep 2 Rep 3

P7 - Own Images

Rep 1 Rep 2 Rep 3

P7 - Others Images

P7- General Images

Rep 1 Rep 2 Rep 3

Fig. 3: Repetition Effect on Users’ Gaze Movements - Top line shows the gaze path for three repetitions with one of the user’s
own images - Middle line shows the gaze path for three repetitions with the user looking at others’ images - Bottom line shows
the gaze path for three repetitions with the user looking at general images.

Fig. 4: Photo Category Classifier AUC per User for the
Random Forest Classifier on Saliency Areas Features

4) User Identification Classifier: We conducted an analysis
using an identification classifier that incorporated all available
features. The random forest classifier achieved the highest
accuracy of 85% in identifying users. To better understand
the classifier’s accuracy, we examined the contributing features
using SHAP [63], a tool designed to elucidate a machine
learning model’s output by assessing each feature’s impact on
predictions. In Figure 7, we present the feature importance plot

Fig. 5: Photo Importance Classifier AUC per User for the
Random Forest Classifier on Generic Features

generated by the random forest classifier. Our observations
indicate that average saccadic length, fixation duration, and
average fixation and saccadic duration significantly influence
the classifier’s accuracy. Additionally, we’ve included the con-
fusion matrix for all participants in Figure 8, which offers
a comprehensive overview of the classifier’s performance in
distinguishing between different user categories.
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TABLE III: Friedmann tests for gaze features while viewing photos in different repetitions (significant results in bold, P < .05).

Gaze Features 1st Repetition 2nd repetition 3rd Repetition Friedmann
F, P

Fixation Count M = 8.5, SD = 2.1 M = 6.1, SD = 1.9 M = 5.8, SD = 1.7 569.3, <.05
Fixation Duration M = 1964.9, SD = 699.8 M = 1541.8, SD = 563 M = 1496.4, SD = 546.6 334.7, <.05
Avg Fixation Duration M = 235.6, SD = 58.1 M = 266.1, SD = 73.9 M = 269.9, SD = 60.6 1119.8, <.05
Avg Saccadic Duration M = 1713.5, SD = 456 M = 1769.4, SD = 481.8 M = 1805.5, SD = 476.2 828.8, <.05
Avg Saccadic Length M = 502.8, SD = 419.9 M = 589.4, SD = 474 M = 557.3, SD = 439.8 59.8, <.05
AOI Fixation Count M = 2.5, SD = 1.7 M = 1.6, SD = 1.3 M = 1.5, SD = 1.1 73.8, <.05
AOI Fixation Duration M = 595.7, SD = 498.4 M = 443.9, SD = 385.6 M = 446.8, SD = 340.9 59.1, <.05
AOI Avg Fix Duration M = 93.7, SD = 53.5 M = 99.7, SD = 65 M = 106.1, SD = 59.7 132.3, <.05
AOI Avg Saccadic Duration M = 635.8, SD = 371.5 M = 538.5, SD = 313.2 M = 611.8, SD = 360.1 149.3, <.05
AOI Avg Saccadic Length M = 132.8, SD = 74.3 M = 137, SD = 83.6 M = 146.1, SD = 77.5 143, <.05

TABLE IV: Photo categories showing best and (average)
classification AUC for SVM and Random Forest classifiers
across the different features

Feature/
Classifier SVM Random Forest

Generic Photo Features 53.79% (43.6%) 50% (40.40%)
Saliency areas Features 70% (50.41%) 100% (91.76%)
Combined Features 66.54% (45.70%) 69.23% (33.20%)

TABLE V: Photo importance showing best and (average)
classification AUC for SVM and Random Forest classifiers
across the different features

Feature/
Classifier SVM Random Forest

Generic Photo Features 85.71% (56.75%) 100% (95.22%)
Saliency areas Features 100% (50.26%) 100% (73.75%)
Combined Features 76.19% (57.68%) 1 100% (92.11%)

VII. DISCUSSION AND FUTURE WORK

A. Gaze for User Identification

Our approach showed that for many users it was possible to
identify the user from their gaze data, collected remotely, using
a user-dependent model. However, building a user-independent
model proved to be challenging due to the fact that the amount
of gaze data collected during the five seconds of exposure using
a remote eye tracker is relatively low. This would probably
also be the case when using mobile cameras for eye tracking
on smartphones, while users are moving, or while they are in
inadequate lighting conditions. Throughout our analysis, we
found that the most important feature for identifying users from
the 10 extracted features is the average saccadic length and
fixation duration. This may mean that when looking at familiar,
important, or memorable photographs, longer fixations will be
found. This suggests that users adapt their visual behavior,
transitioning between skimming and scrutinizing based on
factors such as photo category, importance, and memorabil-
ity [62], [64]. Future work should investigate other factors
affecting users’ gaze behavior while looking at photos, and
consider using different eye trackers with different resolutions
and framerates.

TABLE VI: Photo repetition showing best and (average) clas-
sification AUC for SVM and Random Forest classifiers across
the different features

Feature/
Classifier SVM Random Forest

Generic Photo Features 63.89% (37.2%) 66.67% (49.39%)
Saliency areas Features 46.67% (27.42%) 80% (49.55%)
Combined Features 63.89% (28.83%) 44.26% (47.79%)

Fig. 6: Repetition Classifier AUC per User for the Random
Forest Classifier on Saliency Areas Features

B. Image Importance and Repetition

In our results section, we provided an analysis of the effect
of image repetition and image importance on the users’ gaze
behavior. We have seen that the fixation duration feature was
found to decrease by repetition during our study, although
the gaze scan path may be the same. Hence, when using
our technique in the future, photos may need to be altered,
for example, by changing their contrast or saturation level, to
nudge more fixations or by altering between a set of images
with every device unlock trigger. While we have not tested
that in our study, we find this to be an interesting direction for
future work. Additionally, we would need to test the repetition
effect over a longer period of time as well as introduce more
variety in the photo collection.
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Fig. 7: Results of the feature importance analysis across the
tested features for the user identification classifier.

Fig. 8: Confusion Matrix for User Identification Classifier

Regarding image importance, we found no significant dif-
ferences between images labeled by users as highly important
vs. unimportant. We hypothesize that users assign varying
degrees of importance to photos based on their relationships
and associated memories, aspects that were not explored in
our study. Our research findings highlight the importance of
periodically altering these photos to sustain the efficacy of
this approach. This can be achieved by either consistently
changing the entire photo, adjusting specific elements, such
as saturation, and color mode, or removing parts of the image.
We believe that the integration of this strategy is feasible,
especially considering that some devices already offer features
like automatically changing background images with every
unlock or providing live backgrounds with dynamic elements.
Consequently, future research should delve into understanding
the connection between users and their photos, going beyond
solely assessing subjective importance levels.

C. Gaze behavior Across Image Categories

We explored images in three categories: personal pho-
tographs, photographs of other people, and photos from the
internet of tourist locations. Our research findings suggest that
using personalized photos as backgrounds is more effective in
eliciting unique user behavior. Reflecting on our age group,
our approach might be more suitable for younger generations
with high-resolution front cameras and a wide range of photos
to choose from. Future work should look into different age
groups and user activities, especially since face visibility which
is crucial for eye gaze tracking might not fully visible [65].
Moreover, future work could investigate other types of photos
or features of photos such as photos with high salience areas,
and abstract photos vs photos with more than one person.

D. Integration Into Existing Systems

Identifying users based on photo categories is possible
even with a small amount of gaze data (e.g., a few fixations
captured in an unaltered environment with a remote, low-
framerate eye tracker). We believe that this concept can be
used as a line of defense before authentication/password entry
on any device that has a camera by employing a background
image on the lock screen and tracking the users’ gaze behavior
once the screen is activated. By leveraging the variability in
individuals’ behaviors when viewing photos, a novel two-factor
authentication (2FA) method can be implemented on devices.
This involves incorporating photo-based authentication into the
lock screen, complementing existing authentication methods
for enhanced security. Furthermore, this approach can serve as
a continuous means of user identification and authentication
during regular phone usage. To advance this concept, we
suggest that future research should explore the impact of
application layout on users’ home screens and its correlation
with gaze behavior. However, using our technique comes with
some privacy concerns. Alsaker et al. showed several aspects
affecting the wider adoption of eye trackers on smartphones
affecting the users themselves and also the bystanders such as
the gaze estimation algorithms’ transparency and the develop-
ers’ credibility of what is collected, saved, and shared [66].
Furthermore, nudging users towards using particular images
could be investigated. Abdrabou et al. [67] showed that partic-
ipants were affected by the background image while choosing
alphanumeric passwords reflected in the gaze heatmaps. The
authors highlighted a possible threat of manipulating users
by creating carefully designed images that guide users; gaze
behavior, which required further investigation.

VIII. CONCLUSION

In this work, we investigated our novel approach of using
photo viewing as an implicit user identification technique
leveraging the existence of background photos on most smart
devices. We conducted a remote study, where we collected
users’ eye gaze behaviour while viewing several image cate-
gories with different importance levels and on three repetitions.
Our results showed that users’ gaze behaviour is significantly
different across the different photo types. Moreover, gaze
behaviour changes over time while viewing the same image
multiple times. Our results present a promising avenue for
implicit user identification, bypassing the necessity for artificial
gaze stimuli and contrived gaze behaviour.
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