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ABSTRACT
The mouse is a pervasive input device used for a wide range of in-
teractive applications. However, computational modelling of mouse
behaviour typically requires time-consuming design and extraction
of handcrafted features, or approaches that are application-specific.
We instead propose Mouse2Vec – a novel self-supervised method
designed to learn semantic representations of mouse behaviour
that are reusable across users and applications. Mouse2Vec uses a
Transformer-based encoder-decoder architecture, which is specifi-
cally geared for mouse data: During pretraining, the encoder learns
an embedding of input mouse trajectories while the decoder recon-
structs the input and simultaneously detects mouse click events.
We show that the representations learned by our method can iden-
tify interpretable mouse behaviour clusters and retrieve similar
mouse trajectories. We also demonstrate on three sample down-
stream tasks that the representations can be practically used to
augment mouse data for training supervised methods and serve as
an effective feature extractor.

CCS CONCEPTS
• Computing methodologies→Machine learning; Artificial
intelligence; • Human-centered computing → Human com-
puter interaction (HCI).
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1 INTRODUCTION
In human-computer interaction (HCI), modelling users’ interac-
tive behaviour is crucial given that behaviour contains information
about the users themselves [22, 48], the interfaces they interact
with [69], and the tasks they perform [16]. Among the different
input devices, the mouse is one of the most widely studied modality
for behaviour modelling given that it is readily available in a large
number of systems and pervasively used in daily life [27, 60]. Conse-
quently, mouse behaviour modelling has been explored for various
intelligent applications, such as user identification [12], interactive
task recognition [15, 16, 36], or next activity prediction [19, 38, 74].
A key challenge in all of these applications is that they require com-
putational representations that can capture the temporal, spatial,
and semantic information contained in mouse trajectories. While
some researchers modelled mouse behaviour from the perspective
of optimal control [25, 34, 63] and information theory [26], we focus
on data-driven methods. Handcrafted features and supervised train-
ing based on ground-truth annotated data have been commonly
used to learn mouse representations [73]. However, designing and
extracting meaningful features require expert domain knowledge
and are laborious [13]. Additionally, data collection and annotation
are cumbersome, costly, and time-consuming [11, 59].

More recently, self-supervised methods have gained increas-
ing adoption in HCI, e.g. to learn latent embeddings of user inter-
faces [43, 65], visualisations [42], artwork [71] or speech [53, 59].
These methods learn from the data themselves, without requiring
any extra annotations. Another advantage is that these represen-
tations, if learned properly, can capture the semantics of the in-
put data and their internal relationships in the latent embedding
space [43, 71]. As such, these representations have been shown
to generalise well across datasets and tasks [14, 29]. Despite these
advantages, no self-supervised approach has yet been proposed for
learning representations of mouse behaviour.

To fill this gap, we introduce Mouse2Vec – the first method to
learn reusable semantic representations of mouse behaviour in a
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self-supervised fashion. At the core of our method is a Transformer-
based encoder-decoder, not only leveraging the time and frequency
domain of the continuous cursor locations, but also encoding dis-
crete mouse events (click vs. movements), which are key character-
istics of mouse behaviour. Mouse2Vec is trained on two large-scale,
publicly available mouse datasets: Buffalo [61] and EMAKI [73],
covering both laboratory and out-of-lab settings. We further pro-
pose a multi-task training scheme: After randomly dropping slices
of the time and frequency domain signals, our model is tasked to
reconstruct the entire signals as well as to detect individual mouse
events.

We first show that the representations learned by Mouse2Vec
capture latent relationships between mouse behaviours, reflect
human-interpretable semantics of these behaviours (the underly-
ing interaction goals), and allow for retrieving mouse behaviours
with similar characteristics. Second, we demonstrate the practical
use of Mouse2Vec for data augmentation and as a generic feature
extractor for three sample downstream tasks: user identification,
interactive task recognition, and next activity prediction. We chose
these tasks because they are essential for intelligent interactive
systems and adaptive user interfaces to understand users, the inter-
action context, and intended future activities [12, 19, 31, 32]. Our
evaluations demonstrate consistent improvements on all of these
tasks when using Mouse2Vec representations. Mouse2Vec caters to
both novice and experienced users. While novice users can directly
apply our pretrained model on their data or task, experienced users
with deep learning skills can fine-tune our model to achieve even
better downstream task performance.

The specific contributions of our work are three-fold:
(1) We propose Mouse2Vec1 – the first self-supervised method to

learn semantic representations of mouse behaviour that are
reusable across users and tasks. The representations jointly
encode the time and frequency domain of cursor locations and
click information.

(2) We show that the representations learned usingMouse2Vec cap-
ture the semantics and latent relationships of mouse behaviour,
and are thus human-understandable.

(3) We demonstrate the benefit of using Mouse2Vec for data aug-
mentation or as a feature extractor for three sample down-
stream tasks that are widely relevant for personalised and in-
telligent interactive systems.

2 RELATEDWORK
We discuss related work on (1) self-supervised representation learn-
ing in HCI, (2) mouse behaviour representations, and (3) applica-
tions of mouse behaviour modelling.

2.1 Self-Supervised Representation Learning in
HCI

The HCI community has recently introduced self-supervised learn-
ing methods to learn latent semantic embeddings of user inter-
faces [43, 65], paintings [71], visualisations [42], and speech [53, 59].
Self-supervised learning is a paradigm where models are trained
solely using the input data as its own supervision, without human

1Project webpage: https://perceptualui.org/publications/zhang24_chi/

annotation. This way, the models can extract representations that
not only capture the semantic and relationships of the input, but
also are reusable in different tasks [72].

Screen2Vec [43] used an image encoder-decoder architecture to
learn from UI layouts, and a pretrained Sentence-BERT [52] to learn
from UI components and application descriptions. The final repre-
sentation could display semantic similarities between UIs, which
can be used in retrieving nearest neighbour UIs for UX designers
to understand possible design solutions. Wang et al. [65] presented
Screen2Words that learned embeddings of the essential information
of a UI including individual components, their hierarchy structure
and semantics leveraging a Transformer encoder-decoder architec-
ture. Based on the embeddings, the authors further summarised the
UI screens into natural language. Li et al. [42] proposed a contrastive
learning-based method to learn representations of visualisations.
The nearest neighbour query was applied on the learned represen-
tations to find visualisations that had similar visual and structural
information. This provided a new way for visualisation retrieval,
which can benefit large scale analyses of visualisations. Yilma et
al. [71] proposed a method to learn latent embeddings of paintings
using three existing representation learning methods: latent Dirich-
let allocation, BERT and ResNet. They compared retrieval results of
similar paintings using these embeddings, which provided insights
into art recommendation. WESPER [53] is a Transformer-based
method for learning representations of speech. It was trained by
estimating the masked units of the input whisper speech. Based
on the representations, the method further converted whisper to
normal voice. Su et al. [59] proposed LipLearner, a contrastive
learning-based method that extracted lipreading representations
during silent speech interactions. Their representations could cap-
ture the semantic of each speech, i.e., speech content. The authors
also presented that these representations could serve as effective
features for a downstream task – speech command classification.

Despite the advantages and potential of self-supervised learning,
no prior work has explored such approaches for mouse behaviour.

2.2 Mouse Behaviour Representations
As one of the most frequently used input devices, mouse plays a
significant role in human-computer interaction. It is essential that
mouse data is represented in a way that captures the characteristics
of mouse behaviour, including the click events, temporal dynamics,
spatial patterns, and underlying intents. After preprocessing such
as normalisation [73], resampling [50, 67] and segmentation by
sliding windows [36], mouse data is represented directly as original
trajectories or using handcrafted features extracted from mouse
traces.

Some works have used original mouse traces, including the co-
ordinates of the mouse cursor [2, 9, 35], the time offset of each
data sample [41], and mouse events [67]. These original data are
usually further fed into classifiers, such as multilayer perceptrons
(MLPs) [62], one-dimensional convolutional neural network (1DCNN) [9]
and recurrent neural network (RNN) [41], to tackle with different
tasks. Other works instead extracted a set of handcrafted features
in the time domain, such as mouse movement location, angle, angle
difference, velocity, acceleration, travel length, the straight distance
from the origin of the trace, curvature and jerk [1, 18, 19, 23, 38, 54,

https://perceptualui.org/publications/zhang24_chi/
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56, 57]. Besides time domain features, Yildirim et al. [70] converted
mouse behaviour into the frequency domain and calculated the
mean and maximum of the power and frequency. They showed
that these frequency domain features contributed to mouse be-
haviour modelling. The number of mouse clicks was also used as
a feature [36]. While handcrafted features usually demonstrate
better performance than using the original data, the process of
extracting them is time-consuming and laborious, and requires
prior knowledge of mouse behaviour characteristics. Our approach
aims to address the above limitations by learning reusable mouse
representations directly from the original input, offering a more
efficient solution for different downstream tasks. Our representa-
tions also have the advantage of capturing semantic structures and
latent relationships of the mouse data for better mouse behaviour
understanding.

2.3 Applications of Mouse Behaviour Modelling
Mouse data have been used in a variety of applications including
modelling users [18, 48, 61], understanding interaction contexts [36]
and predicting future activities [16, 38, 74]. For example, Chuda et al.
identified users during web browsing from handcrafted mouse fea-
tures, such as click duration, moving velocity, and acceleration [12].
Mouse behaviour conveys information about users’ cognitive states
such as spatio-temporal visual attention [3] and cognitive load [54].
Identifying the current user enables personalised interfaces, e.g.,
rearranging layouts based on the user’s interaction habit [69]. Iden-
tifying from mouse behaviour is particularly valuable in online
environments where traditional passwords are vulnerable to at-
tacks [61]. Mouse behaviour has also been used in understanding
the interactive contexts. For example, Elbahi et al. recognised inter-
active tasks from mouse trajectories in an e-learning interface [15],
while Koldijk et al. discriminated between 12 office tasks based
on mouse handcrafted features [36]. Knowing which task a user
is performing helps adaptive systems narrow down user needs to
provide efficient assistance, as well as adjust the UIs for quicker
interaction [17]. For example, when detecting the current task to
be image editing, the system may suggest adding an image filter
and thus make filter buttons more salient; under the task of text
formatting, the system may recommend changing the font and
hence increase the saliency of related interactive elements. Other
researchers investigated next activity prediction, which is essen-
tial for anticipatory interactive systems. For instance, Kwok et al.
predicted the next activity out of reviewing videos, self-reporting,
annotating, confirming the annotation, and clicking outside the
window in a crowdsourcing annotation and web search task [38].
Zhang et al. predicted the next formatting activity users intended to
perform in a text editing scenario using original mouse records [74].
Proactive UIs predict and recommend users’ potential next activities
and can also automate tasks, which saves users’ time and improves
productivity [47]. In this work, we build upon these established
tasks and demonstrate that our novel mouse representations can
be effectively reused in different tasks that cover modelling users,
interactive tasks and next activities.

3 LEARNING MOUSE BEHAVIOUR
REPRESENTATIONS

Figure 1 provides an overview of the training pipeline of ourmethod
to learn representations of mouse behaviour. Mouse2Vec is trained
via input reconstruction and mouse event detection, leveraging
information in both the time and frequency domain. Reconstructing
the input from randomly dropped or masked data has been adopted
in recent self-supervised representation learning methods [29, 75].
We designed a particular mouse event detection training sub-task
to encode click information, since clicks are a key characteristic of
mouse behaviour [33, 36].

3.1 Mouse Data Preprocessing
Every data point in the rawmouse input is a four-tuple (𝑥,𝑦, 𝑡, 𝑒𝑣𝑒𝑛𝑡),
where 𝑥 and 𝑦 denote the current on-screen coordinates of the cur-
sor, 𝑡 is the timestamp, and 𝑒𝑣𝑒𝑛𝑡 indicates whether the sample
corresponds to a click (encoded as ‘1’) or movement (encoded as
‘0’). We first normalised the raw 𝑥 and 𝑦 coordinates to the range of
[0, 1] to eliminate the impact of varying screen sizes, as suggested
by Chong et al. [10]. Specifically, we divided the coordinates by
the screen resolution if available; otherwise we used the minimum
and maximum coordinate values and applied a MinMaxScaler2.
Mouse data collection does not adhere to fixed sampling rates, i.e.,
data points are generated only when a mouse action happens, such
as moving the cursor or clicking. To address this, we resampled
the mouse data to 20Hz based on 𝑡 [50, 67] for faster computing
(Appendix D). When there were no data within a sampling unit
(1 𝑠/20𝐻𝑧 = 0.05 𝑠), we replicated the prior data point to ensure
uniformity across time. Subsequently, we segmented mouse data
into five-second windows, with a one-second stride [24, 32, 51].

Given that the frequency domain was shown to also provide rich
information in modelling mouse behaviour [70], we encoded fre-
quency domain information from each time window, encompassing
both magnitude and phase [75]. To convert the temporal data into
the frequency domain,we applied the Discrete Fourier Transform
(DFT):

F [𝑘] =
𝑁−1∑︁
𝑛=0

𝑇 [𝑛] (cos 2𝑘𝑛𝜋
𝑁

− sin
2𝑘𝑛𝜋
𝑁

𝑖), 𝑘 = 0, 1, ..., 𝑁 − 1 (1)

where 𝑇 = (𝑥,𝑦) is the time signal in each window; 𝑁 denotes the
length of 𝑇 , which equals to 100 (5 𝑠 × 20𝐻𝑧); 𝑘 is the index of the
frequency data; 𝑖 represents the imaginary unit (𝑖2 = −1); and F
is the frequency domain of 𝑇 , comprising a sequence of complex
numbers. We retained the former half of the sequence due to its
symmetry following Zhang et al. [75]. For each complex number
𝑧 = 𝑎 + 𝑏𝑖 , we calculated its magnitude𝑀 (𝑧):

𝑀 (𝑧) = ∥𝑧∥ =
√︁
𝑎2 + 𝑏2 (2)

and phase 𝑃 (𝑧) ∈ (−𝜋, 𝜋]:

𝑃 (𝑧) =


arctan 𝑏
𝑎 𝑎 > 0

arctan 𝑏
𝑎 + Sign(𝑏) × 𝜋 𝑎 < 0

Sign(𝑏) × 𝜋
2 𝑎 = 0

(3)

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
MinMaxScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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Figure 1: Pipeline of training Mouse2Vec, the proposed self-supervised mouse behaviour representation learning model. The
input includes time domain 𝑇 , frequency domain magnitude𝑀 and phase 𝑃 , and binary 𝐸𝑣𝑒𝑛𝑡 indicating clicks (1) or moves
(0). Mouse2Vec is trained via reconstructing the 𝑇 ,𝑀 and 𝑃 , and simultaneously detecting 𝐸𝑣𝑒𝑛𝑡 . The average of [CLS] token
embeddings is the representation of the input mouse behaviour.

where Sign(b) =

{
∥𝑏 ∥
𝑏

𝑏 ≠ 0
0 𝑏 = 0

. After preprocessing, mouse trajec-

tory in each window is in the form of (𝑇,𝑀, 𝑃, 𝐸𝑣𝑒𝑛𝑡), where 𝑇 ,𝑀
and 𝑃 denote the original 𝑥 or 𝑦 sequence in the time domain, their
magnitudes and phases in the frequency domain, while the binary
vector 𝐸𝑣𝑒𝑛𝑡 indicates a sequence of clicks or moves.

3.2 Mouse2Vec Model
The preprocessed mouse data is used as input to Mouse2Vec (see
Figure 1). Mouse2Vec uses a Transformer-based encoder-decoder
architecture and is trained in a self-supervised manner, relying
solely on the input data, without requiring any annotations or labels.
The training tasks are to reconstruct 𝑇 , 𝑀 and 𝑃 after randomly
dropping slices of the input, and detecting 𝐸𝑣𝑒𝑛𝑡 .

3.2.1 Dropping Input Slices. We first sliced 𝑇 ,𝑀 and 𝑃 , and each
slice had five data points. Then we randomly assigned a probabil-
ity from a uniform distribution𝑈 (0, 1) to each slice. Slices whose
probabilities were smaller than a dropping ratio were discarded.
We adopted a curriculum learning strategy [6], initially setting a
low dropping ratio of 0.3 and gradually increasing it to 0.8. At each
training epoch 𝑒 , the dropping ratio was𝑚𝑎𝑥 (0.3,𝑚𝑖𝑛(0.8, 𝑒

𝐸𝑝𝑜𝑐ℎ𝑠
)),

where 𝐸𝑝𝑜𝑐ℎ𝑠 represents the total number of epochs. This strategy
has proven to be able to enhance model robustness and conver-
gence [75]. After dropping, we denote the remaining slices as𝑇𝑘𝑒𝑝𝑡 ,
𝑀𝑘𝑒𝑝𝑡 , and 𝑃𝑘𝑒𝑝𝑡 .

3.2.2 Architecture. Inspired by prior self-supervised representa-
tion learning models [29, 44], Mouse2Vec uses an encoder-decoder
architecture based on a Transformer [64]. We chose Transformer
because it can capture long-range temporal dependencies and has

achieved state-of-the-art results in various time series-based appli-
cations [73, 75]. An encoder projects 𝑇𝑘𝑒𝑝𝑡 ,𝑀𝑘𝑒𝑝𝑡 , and 𝑃𝑘𝑒𝑝𝑡 into
an embedding space while a decoder reconstructs the entire input
(before dropping) 𝑇 ,𝑀 and 𝑃 and simultaneously detects 𝐸𝑣𝑒𝑛𝑡 .

In the encoder, we first used three 1DResNet-18 [30] based convo-
lutional neural networks (1DCNNs) to learn local dependencies that
transformed the input to 𝐸𝐶𝑁𝑁

𝑇
, 𝐸𝐶𝑁𝑁

𝑀
, and 𝐸𝐶𝑁𝑁

𝑃
, respectively.

Subsequently, a [CLS] token was concatenated to the beginning
of each 𝐸𝐶𝑁𝑁

𝑖
, 𝑖 ∈ [𝑇,𝑀, 𝑃]. [CLS] tokens are commonly used to

learn the representation of an entire sequence [14]. The concatena-
tions of [CLS] tokens and 𝐸𝐶𝑁𝑁

𝑖
were then added with positional

embeddings and three learnable domain-type embeddings, each
corresponding to a domain 𝑖 ∈ [𝑇,𝑀, 𝑃] and having the same shape
as the concatenations. The summed results were then projected by a
six-layer Transformer encoder to the embeddings, consisting of the
[CLS] embedding 𝐸𝐸𝑛𝑐[𝐶𝐿𝑆 ]𝑖 , followed by the embedding of the input
series 𝐸𝐸𝑛𝑐

𝑖
. 𝐸𝐸𝑛𝑐[𝐶𝐿𝑆 ]𝑖 were averaged to yield the final representation

of the input mouse behaviour, denoted as 𝑅𝑒𝑝𝑟 (𝐼𝑛𝑝𝑢𝑡) [8, 52]. We
set the dimension of the representation to 128. As such, only the en-
coder is needed when using our pretrained Mouse2Vec to generate
mouse representations in the form of 128-dimensional embedding
vectors.

The 𝐸𝐸𝑛𝑐
𝑖

were concatenated and fed into the decoder to perform
the training task [75]. We applied a two-layer Transformer decoder,
shallower than the encoder. This is because a shallower decoder can
reduce training time while maintaining the quality of the learned
representation [29]. The output of the decoder is then passed to
MLPs, one for each training sub-task. Each MLP consisted of three
linear layers. For event detection, we added a Softmax layer at the
end to generate classification labels.
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3.2.3 Multi-Task Training. We trained Mouse2Vec using two sub-
tasks: reconstructing the entire input 𝑇 , 𝑀 and 𝑃 based on 𝑇𝑘𝑒𝑝𝑡 ,
𝑀𝑘𝑒𝑝𝑡 , and 𝑃𝑘𝑒𝑝𝑡 , and simultaneously detecting the click or move
𝐸𝑣𝑒𝑛𝑡 .

Sub-Task 1: Input Reconstruction. Reconstructing the entire in-
put when the input is partially masked or dropped has become a
dominant training paradigm in self-supervised representation learn-
ing [68, 75]. This task can preserve both global and local context
and learn long-term dependencies [29]. We used the mean squared
error between the reconstruction 𝑇 ′,𝑀′ and 𝑃 ′ and ground truth
𝑇 ,𝑀 and 𝑃 as the reconstruction loss 𝐿𝑅𝑒𝑐𝑜𝑛 .

Sub-Task 2: Mouse Event Detection. Given that clicks convey cru-
cial information about mouse behaviour [33, 36], we introduced
event detection to encode click information as a second sub-task.
Since clicks are much sparser compared to mouse movements (see
Section 3.3), i.e., the two classes in 𝐸𝑣𝑒𝑛𝑡 are imbalanced, we em-
ployed a weighted cross entropy between the predicted 𝐸𝑣𝑒𝑛𝑡 ′ and
the ground truth 𝐸𝑣𝑒𝑛𝑡 as the loss 𝐿𝐸𝑣𝑒𝑛𝑡 .

In summary, the training loss of Mouse2Vec is defined as:

𝐿𝑀𝑜𝑢𝑠𝑒2𝑉𝑒𝑐 = 𝐿𝑅𝑒𝑐𝑜𝑛 + 𝛽𝐿𝐸𝑣𝑒𝑛𝑡 + 𝛽′𝐿𝑀𝐼 (4)

where 𝐿𝑀𝐼 is the mutual information between representations orig-
inating from different inputs, which has recently become common
practice in representation learning to encourage extracting more
discriminative patterns [75, 76]. 𝛽 and 𝛽′ were set to 1 and 1e-4,
respectively. The model was trained for 100 epochs with a batch
size of 512 and optimised with the Adam optimiser3. We set the
initial learning rate to 1e-4, and implemented a reduction scheme
where the learning rate was reduced by 10% when the loss stopped
decreasing for 20 consecutive epochs [20]. Appendix C presents
the apparatus and time investment for implementing and training
Mouse2Vec.

3.3 Training Datasets
We trainedMouse2Vec on two different datasets jointly: Buffalo [60]
and EMAKI [73]. Buffalo is a dataset collected in a controlled labo-
ratory environment while EMAKI is an out-of-lab dataset collected
in a more natural interactive setting. Using both types of datasets
provides a diverse range of mouse behaviours, which can help to
learn representations that are robust and generalisable to different
settings [73].

To the best of our knowledge, Buffalo is the largest publicly
available laboratory dataset offering both mouse moves and clicks.
It contains data from 148 participants who performed two task trials
as a session, and repeated the session three times. The first task was
to transcribe a piece of text. The second task was composed of two
sub-tasks: writing opinions on two survey questions and describing
a picture; completing routine work such as writing an email, adding
attachments, and free Internet surfing. After preprocessing, Buffalo
had 140 K mouse trajectories in total. 1% of the actions were clicks.

EMAKI is a publicly available, out-of-lab dataset that contains
mouse movement and click data recorded during different interac-
tive tasks. The data were collected from 39 participants who joined
an online user study via their own computers to conduct three

3https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

interactive tasks: writing and editing an article, drawing and edit-
ing images, and completing questionnaires about demographics
and personality traits. After preprocessing, EMAKI provided 38K
mouse trajectories in total. 3% of the actions were clicks, again
showing the sparsity of clicks.

4 ANALYSING THE REPRESENTATIONS
LEARNED BY MOUSE2VEC

We first conducted qualitative evaluations to analyse if representa-
tions learned by our method capture meaningful relationships of
mouse behaviour, i.e., similarities and differences between mouse
behaviours in terms of their spatial, temporal, and interaction goals.
To this end, we first clustered the mouse behaviours based on their
representations. We then examined the nearest neighbours of a
mouse trajectory, i.e., looking for trajectories that were the most
similar. We further confirmed the utility of our representation via
practical downstream tasks, which we will introduce in Section 5.

We evaluated the semantics of the representations on the EOTT
dataset [49], which is publicly available and offers diverse mouse
behaviours generated during various tasks by 51 participants. The
interactive tasks included two artificial and two naturalistic tasks:
One artificial task is a standard Fitts’ Law study, where participants
had to move the cursor to various target dots, arranged in a circle,
following a pre-defined trace. The other artificial task is target selec-
tion, where the target moved in a 3×3 grid from the top left corner
all the way to the bottom right corner of the screen. Participants
had to follow and click on the target. The naturalistic tasks included
web search and creative writing, in order to replicate a scenario of
reading, searching for information, and typing the solution. After
preprocessing, EOTT comprised 11 K mouse trajectories.

4.1 Mouse Behaviour Clusters
Weused hierarchical density-based spatial clustering (HDBSCAN) [7]
to identify clusters in the Mouse2Vec latent embedding space. HDB-
SCAN does not require pre-defining the number of clusters, can
handle clusters with varying densities and noisy data points, and
has been successfully used in representation-based clustering [71].
We used cosine similarity as the distance metric, which is a common
practice in representation learning [28, 42]. On the EOTT dataset,
HDBSCAN identified a total of 105 clusters. Here, we examined the
nine clusters with the highest number of mouse samples, as they
provided insights into the most prevalent behaviour patterns. For
each cluster, we visualised the two mouse trajectories closest to its
centroid and analysed their underlying interaction goals because
these can be considered representative of the whole cluster [40].
As presented in Figure 2, blue lines adorned with arrows show
the mouse moves, which gradually fade over time, while clicks are
indicated with red stars.

We found that most of the mouse behaviour in the largest cluster
and the third largest clusters came from the standard Fitts’ law
task. In this task, participants navigated the mouse between fixed
target points and clicked on them, and hence behaved similarly.
The representative mouse trajectories in Figure 2a and Figure 2c
reflected such navigation and clicks. Two clusters (Figure 2e, 2f)
were formed by trajectories that all originated from the other ar-
tificial task, target selection where participants followed the dot

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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(a) Moving between targets and clicking on tar-
gets

(b) Adjusting the cursor to click on a target at
the top-right area

(c) Moving up to click and then vertically down
to click

(d) Adjusting the cursor to click on a target at
the middle area

(e) Moving to click at the top-left corner and
then horizontally to the right and click again

(f) Clicking at bottom-left, moving horizontally
to the right, clicking in the middle

(g) Adjusting to interact with a target at the
bottom-middle area

(h) Adjusting to click on a target at the top-left
area

(i) Moving diagonally to click at the top-left
corner

Figure 2: Two representative mouse trajectories for each of the nine largest clusters and their semantics. The two trajectories are
the closest to the centroid of each cluster. The clusters are identified using HDBSCAN based on the cosine similarity between
Mouse2Vec representations. The trajectories are shown in fading blue lines adorned with arrows. Each red star indicates a click.

(a) Single click Single click Single click Single
click

(b) Adjusting the cursor to click on a target at
the top-right area

(c) Moving up to click and then vertically down
to click

Figure 3: Two representative mouse trajectories for each of the three smallest clusters and their semantics.

moving from left to right. The plotted samples also showed the
pattern of moving to the right and clicking on the targets. Addition-
ally, four (Figure 2b, 2d, 2g, 2h) of nine clusters comprised short
mouse movements within a small area, often accompanied by clicks.
These patterns suggest a goal of adjusting the cursor to click on
a target. This finding is in line with prior research indicating that
users exhibit similar behaviour when interacting with a precise
target [73]. The last cluster showed long and quick moves to click
at the top-left corner (Figure 2i). Therefore, we can observe that
similar mouse patterns, such as adjusting the mouse to click, that
occur in distinct screen regions were in different clusters. This is
a reasonable outcome since these behaviours may carry various
meanings. For instance, mouse movements followed by clicks in
the screen’s top-left or top-right corner could indicate an intention
to close or minimise a window, while similar movements and clicks
in the top-middle area might suggest switching between tabs or

selecting items from menus or tools. We also visualised the smallest
three clusters in Figure 3, which are also interesting given that
they reflect rare behaviours. The representative trajectories of the
three clusters either consist of only one mouse action (Figure 3a)
or display redundant movements (Figure 3b, 3c).

4.2 Retrieving Similar Mouse Behaviour
Clustering allows us to study the relationship between different
mouse behaviours at the level of trajectory groups. In a second
step we analysed the instance level, i.e. the similarity of individual
mouse trajectories, using a instance retrieval approach [42, 43].
For a mouse trajectory query, we retrieved its three most similar
behaviours, i.e., top-3 nearest neighbours [43]. We again used the
cosine similarity between representations to measure the similarity
between their corresponding original mouse trajectories. To under-
stand if and how well our representations capture the similarity
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between mouse behaviour, we compared them to other representa-
tions, visualising these baselines’ retrieval results.

4.2.1 Baselines. The baselines include ablations of Mouse2Vec and
classical mouse representations, i.e., original data and handcrafted
features as introduced in Section 2.2:
• Original data. The preprocessed mouse data.
• Handcrafted features. We incorporated a wide range of com-
monly used features from prior mouse behaviour modelling
works resulting in 100 features, including clicks, cursor loca-
tions, trajectory angles and velocities, and frequency domain
powers. The complete feature set is described in Appendix A.

• Ablations of Mouse2Vec. Given that our approach leverages
time domain and frequency domain (magnitude and phase) of
the on-screen locations and mouse events, i.e., the four boxes
after Transformer decoder in Figure 1, we removed each of
them as an ablation. As such, Mouse2Vec w/o Event removed
event detection and thus only learns from reconstruction of the
three other signals; Mouse2Vec w/o Time, Mouse2Vec w/o Mag-
nitude andMouse2Vec w/o Phase were pretrained to reconstruct
the other two remaining signals and meanwhile detect mouse
events.

Following priorworks, we calculated both Euclidean distanceOrieuc [46]
and cosine similarity Oricos [45] to measure the similarity between
the original data, the Euclidean distance Handcraftedeuc to measure
the similarity between handcrafted features [39], and the cosine
similarity between representations for the ablations.

4.2.2 Results. Figure 4 shows an example query of mouse be-
haviour and the top-3 nearest neighbours retrieved by the proposed
Mouse2Vec and baseline methods. The query trajectory first clicks
in the middle of the screen, then moves to the top-left corner and
down from the left to click at the bottom. The three trajectories
retrieved based on Mouse2Vec representations have similar shape
and include a click in the middle. Two of them also contain a sec-
ond click at the similar, bottom location. Based on the original data,
using Euclidean distance or cosine similarity retrieved the same
trajectories with different ranks. However, all move down to the
right of the move-up, different from the query. In addition, only
one captured two clicks. None of the behaviours retrieved from
handcrafted features have clicks or similar shapes to the query.
Among the ablations, Mouse2Vec w/o Phase captured the moving
trend and at least one click, while w/o Magnitude found similar
move directions, but both were still worse than Mouse2Vec. w/o
Time and w/o Event resulted in trajectories with significantly dif-
ferent outlines compared to the query. These observations indicate
that the time, frequency domain and mouse events are all essen-
tial for the representations to capture latent similarities of mouse
behaviour. Moreover, time domain and mouse events are more im-
portant than frequency domain. Figure 5 presents more examples
using Mouse2Vec. Judging visually, result trajectories generally
have similar outlines, moving directions, on-screen locations and
clicks compared to the query, indicating that Mouse2Vec embed-
dings learned meaningful mouse patterns. We further evaluate the
similarity from a quantitative perspective in Section 5.1.

In summary, the two qualitative analyses demonstrated that the
representations learned by Mouse2Vec capture semantics of mouse

Query

Mouse2Vec

Orieuc

Oricos

Handcraftedeuc

w/o Time

w/o Magnitude

w/o Phase

w/o Event

Figure 4: An example mouse trajectory as the query and the
top-3 nearest neighbours retrieved using Mouse2Vec repre-
sentations and baselines.
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Query

Query

Query

Mouse2Vec

Mouse2Vec

Mouse2Vec

Query

Query

Query

Mouse2Vec

Mouse2Vec

Mouse2Vec

Figure 5: Six more example queries and their top-3 nearest
neighbours retrieved using Mouse2Vec representations.

behaviour and can be used to retrieve mouse trajectories that have
similar characteristics. Moreover, the evaluations were conducted
on a dataset different from the pretraining ones, confirming that
the representations are reusable.

5 EVALUATION FOR DIFFERENT
DOWNSTREAM TASKS

We then conducted quantitative evaluations of Mouse2Vec to eval-
uate its practical usefulness for different downstream tasks. We
used the representations in two ways: To augment data with lim-
ited labels using the retrieved nearest neighbours and as a generic
mouse behaviour feature extractor. We evaluated these approaches
for three sample downstream tasks: interactive task recognition,
next activity prediction and user identification. These tasks are im-
portant for developing personalised intelligent interactive systems
that can analyse user needs and actively anticipate and recommend
potential activities [17, 19, 32].

For interactive task recognition, we used the EOTT dataset that
included four tasks as introduced in Section 4.1. To enable next
activity prediction, we used another public dataset ACTIVITY [74].
This dataset was collected from 16 participants performing text
formatting tasks in a controlled laboratory setting. In each trial,
participants applied a sequence of formatting activities to given
"Lorem Ipsum" text snippets. There were seven candidate activities
allowed by the text editor: bold, italic, underline, font size, font
family, alignment, and indentation. After preprocessing, ACTIVITY
had 7K mouse trajectories, where 3% of mouse events were clicks.

We used both datasets for user identification because they both
provide user IDs (51 users in EOTT and 16 users in ACTIVITY).

For interactive task recognition and next activity prediction, we
performed a five-fold user-independent cross-validation to assess
the generalisability of the method across users. Hence, we randomly
split these participants into five sets. In each fold, we trained the
classifier using data from four sets of participants and tested it
on the remaining one. We repeated this procedure five times and
averaged the accuracy across all folds as the final performance
metric. For the user identification task, we performed five-fold
user-dependent cross-validation because both the training and test
sets need to have data from every user. We first randomly split
each participant’s data into five sets, in each fold we combined the
four sets from all the participants as the training set, and used the
remaining as the test set. We also repeated this five times and used
the average accuracy as the performance metric.

We used MLP classifiers for the downstream tasks given that
they are often used in mouse behaviour modelling [2, 57, 62]. The
MLP we used had three linear layers, each with 64 hidden units. The
first two linear layers were followed by ReLU activation functions,
while the last layer was followed by a Softmax function to map
the probability to class labels. The learning rate was initially set to
1e-3 and the classifier was trained for 50 epochs. We also used the
Adam optimiser, and reduced the learning rate by 10% when the
loss stopped decreasing for 20 consecutive epochs. Cross entropy
between the prediction and ground-truth labels was used as the
loss function.

5.1 Data Augmentation Based on Similar
Behaviour

In HCI, we frequently face the challenge of having limited labelled
data due to the high cost of data collection [11, 59]. The retrieved
nearest neighbours to a mouse trajectory can be used to augment
data when building data-driven models for practical tasks. To sim-
ulate a scenario of data scarcity, we randomly retained only 10%
of the training data. For each training sample, we performed data
augmentation using its nine nearest neighbours, which restored the
training set to its original size. We queried for similar behaviours
on the pretraining datasets (Buffalo and EMAKI) because they con-
tain a variety of mouse behaviours. Specifically, we performed the
following steps for each original mouse data sample in the 10%
training set [66]:
(1) Use the pretrained Mouse2Vec to generate representations of

the query sample and the candidate samples from the pretrain-
ing datasets;

(2) Calculate the cosine similarities between the query’s represen-
tation and candidates’ representations;

(3) Find the nine nearest neighbours from the candidates;
(4) Add these neighbours to the training set and assign them the

same label as the query.
We then fed the augmented training data into the MLP classifier.

Table 1 shows the accuracies achieved with and without data
augmentation for all three tasks. As can be seen from the table, data
augmentation consistently improved the accuracy across tasks and
datasets. For example, the accuracy of recognising four interactive
tasks on EOTT increased by 6.79%, and the accuracy of identifying
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Augmentation
ACTIVITY Dataset EOTT Dataset

Next Activity User Interactive Task User
Prediction Identification Recognition Identification

w/o 44.27±2.36 10.22±0.90 65.81±3.81 4.37±0.40

Orieuc 45.70±2.35 13.11±0.68 70.86±4.27 4.50±0.59
Oricos 45.01±0.93 13.42±0.71 65.29±2.58 4.28±0.36

Handcrafted 43.87±0.67 9.04±1.16 64.82±6.78 3.62±0.61

Mouse2Vec

w/o Time 44.71±0.70 10.29±0.84 60.94±3.87 4.71±0.21
w/o Magnitude 46.90±1.42 13.96±0.83 71.65±4.46 4.86±0.41

w/o Phase 46.52±1.43 14.05±1.02 65.29±2.58 5.13±0.57***
w/o Event 45.45±1.38 12.63±1.17 70.87±4.23 4.78±0.51

Full 47.09±2.03* 14.34±0.67* 72.60±4.03* 5.02±0.38
Table 1: Accuracies (Mean±Std, in percentage) achieved in three tasks evaluated on two datasets, by using only 10% of the original
mouse training data (w/o), and augmented with the nine nearest neighbours retrieved based on different representations. Best
results are shown in bold and the second-best results are underlined. The three tasks are interactive task recognition (evaluated
on EOTT), next activity prediction (evaluated on ACTIVITY) and user identification (both datasets). Stars mark the significance
levels of difference between accuracies (*𝑝 < .05, **𝑝 < .01, ***𝑝 < .001).

16 users on the ACTIVITY dataset increased by 4.12%. We further
performed a Wilcoxon signed-rank test and confirmed that the
differences between the results were statistically significant (𝑝 <

.05). Mouse2Vec and its ablated versions consistently achieved the
best two results on the different downstream tasks and datasets.
The full version of Mouse2Vec performed the best in most cases,
showing that time and frequency domain as well as mouse events
are all useful. Among the ablations, w/o Phase and w/o Magnitude
outperformed w/o Time and w/o Event, illustrating that the time and
event information is more important than magnitude and phase. We
can also see that augmenting data via handcrafted features obtained
worse accuracy than using the original 10% data. This is likely
because augmenting data with dissimilar trajectories introduces
data and label noise, while Section 4.2 also visually presents that
handcrafted features are not ideal to retrieve similar mouse data.

5.2 Mouse2Vec as a Reusable Feature Extractor
Pretrained models can be reused on new datasets to extract fea-
tures. For example, the VGG model [58] was first trained on natural
images but later directly used or fine-tuned to extract features also
from other types of images. Inspired by this, we evaluated if our
pretrained Mouse2Vec could be used to extract features for differ-
ent tasks. We also evaluated the two ways of extracting features:
1) Directly applying the pretrained Mouse2Vec, i.e., freezing the
encoder of Mouse2Vec and only updating the classifier; and 2) fine-
tuning the pretrained Mouse2Vec for each downstream task, i.e.,
starting from the pretrained encoder parameters and updating both
the Mouse2Vec encoder and the classifier. The former case allows
(novice) users to quickly and easily apply our model for their dataset
or task without changing Mouse2Vec; whereas the latter targets at
users who have experience in training deep learning models.

We compared Mouse2Vec with the baselines introduced in Sec-
tion 4.2.1. While in data augmentation, the input to the classifier

was always (augmented) original data, here the input was differ-
ent: For representations learned by Mouse2Vec and its ablations,
the input of the classifier was the embedding vector generated by
the encoder. For handcrafted features, the input to the classifier
was the feature vector. For original mouse data, the input was the
preprocessed mouse sequence. We used all data from each dataset.

The results from these experiments are summarised in Table 2.
Directly using the frozen Mouse2Vec already outperforms other
representations on all tasks and both datasets. Mouse2Vec achieved
an accuracy of 75.84% when recognising four interactive tasks and
62.69% when predicting the next activity (out of seven) with an
improvement of 4.90% compared to using handcrafted features.
For user identification on ACTIVITY (16 individuals), Mouse2Vec
obtained an accuracy of 19.59%, and 9.43% when identifying 51
individuals on EOTT dataset. In most cases, handcrafted features
obtained better results than the original mouse data, indicating
the effectiveness of these features used in prior works. Among the
ablations of Mouse2Vec,w/o Time andw/o Event brought the largest
performance drop. This shows that encoding the time domain and
mouse events into the representation is essential. We further per-
formed a Wilcoxon signed-rank test between the results achieved
by Mouse2Vec (both freezing and fine-tuning) and the best results
obtained by the two classical representations. The test confirmed
that Mouse2Vec significantly outperformed original mouse data
and handcrafted features. These results demonstrate that the pre-
trained Mouse2Vec can be transferred to other datasets to extract
mouse behaviour features that are useful for three different tasks.

Given that the full version of Mouse2Vec outperformed the other
representations, we evaluated fine-tuning using the full version
and found it further boosted the performance on all the down-
stream tasks. Fine-tuning increased the accuracy by 18.03% when
predicting the next activity, 15.76% and 11.43% when identifying
users from ACTIVITY and EOTT dataset, and 7.78% when recog-
nising interactive tasks, from the best-performing classical repre-
sentation. Compared to the frozen Mouse2Vec encoder that were
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Representation
ACTIVITY Dataset EOTT Dataset

Next Activity User Interactive Task User
Prediction Identification Recognition Identification

Original 47.45±0.92 15.58±4.85 72.97±3.30 5.86±0.15
Handcrafted 57.79±3.17 16.43±1.54 73.55±2.89 5.69±0.18

Mouse2Vec

w/o Time 53.59±2.14 15.11±0.81 73.25±4.21 6.34±0.33
w/o Magnitude 59.02±2.58 16.03±0.62 73.35±3.53 7.59±0.35
w/o Phase 59.76±1.81 17.84±1.58 74.16±3.24 8.34±0.44
w/o Event 57.87±1.82 15.66±0.99 73.28±2.94 6.40±0.41
Full 62.69±3.57*** 19.59±0.60** 75.84±3.39* 9.43±0.42***
Full (FineTune) 75.82±3.88*** 32.19±0.83** 81.33±3.05** 17.29±1.10***

Table 2: Accuracies (Mean±Std, in percentage) on interactive task recognition (EOTT dataset), next activity prediction (ACTIVITY
dataset) and user identification (both datasets). We compare results achieved using representations obtained by Mouse2Vec
with using original data, handcrafted features, or representations learned using the ablation of Mouse2Vec. The bottom row
presents the results when fine-tuning our pretrained Mouse2Vec. Best results are shown in bold, and the second-best results are
underlined. Stars mark the significance levels of difference between Mouse2Vec and the best classical representation (*𝑝 < .05,
**𝑝 < .01, ***𝑝 < .001).

trained according to the distribution of the pretraining datasets,
fine-tuning can adapt the model towards the domain of the down-
stream datasets. Additionally, fine-tuning allows updating more
parameters of the model, i.e., the model has a larger capacity than
directly deploying the frozen Mouse2Vec.

We also compared Mouse2Vec against the approaches that were
specifically geared to each downstream task from prior works
(see Appendix F). Results showed that directly using the pretrained,
frozenMouse2Vec outperformed thesemethods inmost cases, while
fine-tuning Mouse2vec always led to the best results. Given that
Mouse2Vec was trained on two datasets, we also evaluated its per-
formance when trained only on one dataset (See Appendix B). Re-
sults show that training on both datasets outperformed training
on only one dataset, confirming the effectiveness of our training
strategy.

6 DISCUSSION
6.1 On Performance
In this work, we proposed Mouse2Vec – the first self-supervised
method to learn reusable semantic representations of mouse be-
haviour. We evaluated the learned representations on three sample
downstream tasks with practical value for the development of in-
telligent user interfaces. As shown in Table 2, the representations
learned using Mouse2Vec perform significantly better than using
original mouse behaviour data (15.24% improvement) and hand-
crafted features that are widely used in mouse behaviour modelling
(4.90% improvement). These improvements are consistent across
these different tasks as well as the two datasets investigated in this
work (ACTIVITY and EOTT). These results are highly promising, in
particular in light of other benefits that our self-supervised methods
offers compared to the widely used approach of manual feature
engineering. It is often unknown which features will be useful for a
specific task beforehand, and thus requires either domain expertise
to pick or invent features, or implementing many candidate fea-
tures, e.g., over one hundred features [1], which is time-consuming

and tedious. As such, self-supervised learning also significantly
lowers the barrier for interactive behaviour modelling in HCI.

Beyond these advantages, Mouse2Vec is even more beneficial for
experienced userswho knowhow to train or fine-tune deep learning
models. Fine-tuning updates parameters of both the encoder and
classifier and hence, offers improved adaptability to various settings,
tasks, or users. As we have shown in Table 2, fine-tuningMouse2Vec
results in even larger performance improvements for downstream
tasks, reaching up to 28.37% improvement compared to using the
original data and 18.03% compared to handcrafted features.

As shown in Table 1, the representations learned usingMouse2Vec
is also effective for augmenting data required to train supervised
methods. We also showed that Mouse2Vec achieved comparable
performance to baseline representations when using only 50% or
even 20% of annotated training data (Appendix E). It is a com-
mon problem in many computational behaviour modelling tasks
that collecting labelled training data is costly and thus undesirable.
When used for data augmentation, Mouse2Vec can achieve signifi-
cant performance improvements of up to 6.79% when trained on
only 10% of real data and the remaining 90% generated via nearest
neighbour retrieval. Despite these improvements, the performance
remains slightly lower than when trained on the full amount of
original data (cf. row "Original" in Table 2). This is likely because
the augmented data were gathered from the pretraining datasets
and assigned labels according to query samples, which introduced
data and label noise. In contrast, training with the full amount was
done using data from the same dataset and genuine labels.

We also showed that leveraging two datasets to train Mouse2Vec
obtained better representations than using only one dataset. This
suggests that the performance of self-supervised (mouse) behaviour
modelling can be further improved, if additional datasets can be
released in the future.
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6.2 On the Method
In this work, we described one possible implementation ofMouse2Vec
that uses a Transformer-based encoder-decoder architecture. This
choice was motivated by the recent success of Transformer-based
models across a wide range of tasks and fields in the computer and
engineering sciences, including HCI [52, 65, 73]. While the encoder-
decoder architecture has been generally used in many works, we
introduced two design decisions that make the method geared to
mouse behaviour representation learning. The key characteristic
and contribution of Mouse2Vec is that it jointly encodes the time
and frequency domain (magnitude and phase) of continuous on-
screen cursor locations, as well as discrete mouse events (clicks vs.
moves). As can be seen from the ablation experiments, these design
decisions have proven to be crucial to achieve the aforementioned
performance: Removing any of time, magnitude, phase or event en-
coding resulted in a performance drop compared to the full model in
most cases in data augmentation and feature extraction. Specifically,
Mouse2Vec w/o Event and w/o Time performed the worst, indicat-
ing that mouse events and the temporal sequence of on-screen
locations contain important information and are most essential for
mouse behaviour modelling. This finding echoes prior works that
have found mouse clicks [33, 70] and temporal information to be
important in mouse data-driven tasks [54, 69]. Our evaluations also
provided qualitative evidence to support this finding. For exam-
ple, by visualising the similar mouse behaviours, we found that
removing the frequency domain information still roughly capture
the similarity in terms of location and shape. However, removing
the time or event information resulted in a loss of this information
(Figure 4).

With continuing advances inmachine learning, specificallymeth-
ods suited for temporal sequence modelling tasks, it will be inter-
esting in future work to explore other Mouse2Vec implementations
that either use entirely new underlying architectures or other ways
to encode spatio-temporal mouse behaviour data.

6.3 On Representation Learning of Mouse
Behaviour

In this work, we explore a method that may represent a para-
digm shift in computational user behaviour modelling – specif-
ically mouse behaviour as studied here, but also beyond. In the
past, computational models of behaviour were developed for each
individual interactive task or application, which limited their gener-
alisability and reusability. Self-supervised representation learning,
in contrast, has the potential to establish an entirely new paradigm
in which rich representations of user behaviour can be learned
without manual annotations. These representations can also be
shared, built upon, and improved further by training on additional
datasets – thus benefiting a wide range of tasks and applications
at the same time. As we have shown through a cluster analysis of
the representations (see Section 4.1) as well as a nearest neighbour
retrieval experiment (see Section 4.2), the similarity of latent embed-
dings reflects the similarity of the original mouse behaviours. This
suggests that the learned representations are able to capture un-
derlying structure and semantics of mouse behaviour. Mouse2Vec
can identify mouse behaviours for similar interaction goals, such as
adjusting the cursor to click on a precise target, or move the cursor

quickly across the screen. By doing so, our method identifies tra-
jectories that are generally more similar to the query than several
baselines. Most importantly, we demonstrate that these clusters
are human-understandable and encode semantics (see Figure 2 and
Figure 3). This is no small feat in light of the well-known limitations
with respect to interpretability and the black-box nature of many
machine learning methods. As such, the representations learned
by Mouse2Vec can not only be used to improve performance or
enable new applications, but also have potential as a tool to analyse,
better understand, and characterise user behaviour in a data-driven
fashion. This understanding can then be used to improve future
interactive systems.

6.4 Limitations and Future Work
The aforementioned properties make our method promising for a
number of potential future applications and use cases: For example,
the clusters could be used to automatically annotate trajectories
in a long mouse data recording, which saves time compared to
human annotation. Based on the sizes of clusters, UX designers
could analyse users’ common or rare mouse behaviours to improve
the usability of an interface. This could be used for UI optimisation,
e.g., moving important information to the most frequent areas or
by optimising layouts to minimise mouse travel time. The system
could also retrieve other users with similar mouse behaviours and
who have successfully completed a task, and then provide guidance
to users who struggle or get stuck.

While the mouse is widely used and one of the most important
input devices, one limitation of our work is that we have not studied
other devices, such as the keyboard. Given that mouse and key-
board are usually used together in daily interaction scenarios, it
will be interesting to see how our method could be extended to such
multi-modal representation learning – a task that is now attracting
increasing attention in HCI research [4, 65]. Another modality that
we have not explored in this work, given that this may raise pri-
vacy concerns, is the user interface itself. However, future research
could also learn multi-modal UI-mouse representations, e.g., by
integrating models like Screen2Vec [43]. This would allow us to
analyse the interplay between interface and mouse behaviour, and
thus further improve mouse behaviour modelling.

7 CONCLUSION
In this work, we proposed Mouse2Vec – a novel self-supervised
method to learn representations of mouse behaviour. In contrast to
existing mouse behaviour modelling methods that are application-
specific, our approach yields representations that can be reused
across users and interactive tasks. Our results demonstrated that
the representations learned by Mouse2Vec capture latent semantics
and relationships of mouse behaviours in the form of interpretable
clusters and allow to retrieve mouse trajectories with similar char-
acteristics. Extensive experiments for three practical sample down-
stream tasks and different datasets, illustrated that Mouse2Vec is
effective in improving performance when used for data augmen-
tation or as a feature extractor. We believe its reusability and data
efficiency make our approach particularly appealing as an alterna-
tive to tedious and time-consuming data collection and annotation
that are common in HCI research so far. More generally, our results
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underline the potential of applying self-supervised methods for
computational user and behaviour modelling in HCI.
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A COMPLETE FEATURE SET
Table 3 shows the 100 handcrafted features used in our work as
a baseline mouse representation. These features were commonly
used in prior mouse behaviour modelling works as introduced in
Section 2.2.

B BUFFALO AND EMAKI
Since our Mouse2Vec was trained on two datasets, Buffalo and
EMAKI, we examined if they both contribute useful information to
the representation. Therefore, we compared the accuracies achieved
on downstream tasks using Mouse2Vec pretrained on both datasets,
on only Buffalo or only EMAKI. Table 4 shows the accuracies
achieved on three downstream tasks on two datasets. We can see
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Statistic Description Reference

Total number Clicks [36]

X and Y coordinate [23, 38]
Travel distance [1, 18, 19, 23, 56]

Mean, Median, Straight distance [19]
Maximum, Minimum, X, Y, angular and total speed [1, 18, 19, 23, 38, 54, 56]
Standard deviation X, Y and total acceleration [1, 18, 19, 23, 38, 56]

Angle, angle difference [1, 18, 19, 23, 38, 56]
Jerk [1]
Curvature [1, 23]

Mean frequency, Mean power, Speed, Acceleration, Jerk,
[55, 70]Peak power, Peak power frequency Angular velocity, Curvature,

Curvature difference
Table 3: A collective mouse feature set used in prior mouse behaviour modelling methods.

Training
Dataset(s)

ACTIVITY Dataset EOTT Dataset

Next Activity User Interactive Task User
Prediction Identification Recognition Identification

Buffalo 59.69±2.82 18.15±0.88 73.63±4.56 8.26±0.70
EMAKI 54.81±1.87 15.33±0.99 71.56±3.25 6.38±0.33

Buffalo + EMAKI 62.69±3.57*** 19.59±0.60** 75.84±3.39* 9.43±0.42***
Table 4: Accuracy (Mean±Std, in percentage) on three downstream tasks achieved by Mouse2Vec pretrained on different datasets.
Best results are shown in bold. Stars mark the significance levels of difference between Mouse2Vec and the second best results
(*𝑝 < .05, **𝑝 < .01, ***𝑝 < .001).

that pretraining on Buffalo dataset outperformed on EMAKI. This is
likely because the Buffalo dataset has a much larger amount of data
compared to EMAKI (about 4 times). This means that the Buffalo
dataset can encode richer information aboutmouse behaviour. How-
ever, pretraining on both datasets achieved the highest accuracies.
This indicates that both datasets contribute to the representation,
which is consistent with previous research [5] and validates the
effectiveness of our training strategy.

C APPARATUS AND TIME CONSUMPTION OF
MOUSE2VEC

We trained and evaluated Mouse2Vec on a server, which has Intel
Xeon Platinum 8260 CPU and NVIDIA Tesla V100-32GB GPU. Deal-
ing with a batch of mouse data (512 mouse trajectories) required
∼3.87 GB of RAM. Mouse2Vec works on both GPU and CPU. Table 5
presents the time consumption of processing one batch on GPU
or CPU to: train Mouse2Vec, extract representation using the pre-
trained Mouse2Vec, train an MLP-based classifier after the frozen
Mouse2Vec, and fine-tune Mouse2Vec together with the classifier.
For each scenario, we calculated the average time across all the
batches. It can be seen that on GPU, our Mouse2Vec is promising
to be used in real-time applications.

D HIGHER RESAMPLING RATES
We evaluated Mouse2Vec when resampling mouse data at 20Hz [50,
67] in the main paper. We also tested Mouse2Vec at higher sam-
pling rates, i.e., 100Hz, 250Hz or 500Hz [22, 27] for downstream
tasks. As shown in Table 6, the performances are similar among
these sampling rates (<2% difference). To save compute time and
resources, we chose 20Hz.

E PROPORTIONS OF TRAINING SET
We trained classifiers for downstream tasks on a fraction (10%, 20%
or 50%) of the annotated data, based on the classical representations
or Mouse2Vec features (freezing or fine-tuning). As shown in Fig-
ure 6, Mouse2Vec consistently outperforms the baselines on all the
subsets. When trained on 50% data, the frozen Mouse2Vec gets the
accuracy comparable to classical representations that were trained
on the entire dataset. The performance improvements become even
more significant when fine-tuning Mouse2Vec – using 20% of the
training set already shows higher accuracies than baselines. Our
result is promising given that it points towards a future in which
only fractions of training data actually will have to be collected
and annotated manually, potentially saving 50% or even 80% of the
annotation effort; and will be complemented with synthetic data to
improve performance of user behaviour models (Section 5.1).
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GPU CPU

Self-supervised training of Mouse2Vec 0.15 2.89
Extract representation with Mouse2Vec 0.05 0.67

Frozen Mouse2Vec + Classifier 0.12 3.31
Finetune Mouse2Vec + Classifier 0.15 3.92

Table 5: Average time consumption (in second) processing one batch (512 mouse trajectories) in different scenarios using GPU
or CPU.

Sampling ACTIVITY Dataset EOTT Dataset

Rate (Hz) Next Activity User Interactive Task User
Prediction Identification Recognition Identification

20 62.69±3.57 19.59±0.60 75.84±3.39 9.43±0.42
100 62.99±1.06 18.50±1.08 75.10±5.16 8.95±0.70
250 61.70±1.58 18.06±1.21 74.93±3.51 9.75±0.52
500 62.00±3.04 18.89±0.56 76.21±3.43 9.44±0.75

Table 6: Accuracies (Mean±Std, in percentage) on interactive task recognition (EOTT dataset), next activity prediction (ACTIVITY
dataset) and user identification (both datasets). We compare results achieved by pretrained Mouse2Vec when using different
sampling rates of mouse data. Best results are shown in bold.
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Figure 6: Accuracy achieved by original mouse data, hand-
crafted features, and freezing (Freeze) or fine-tuning (Fine-
Tune) the pretrained Mouse2Vec using different proportions
of training set (annotated data).

F COMPARISON WITH PRIOR TASK-SPECIFIC
METHODS

We compared Mouse2Vec with mouse-based data-driven methods
that have been proposed by prior works specifically geared towards
each downstream task. We evaluated both freezing and fine-tuning

Mouse2Vec as in Section 5.2. Between each of them and the best
performing prior method, we conducted a Wilcoxon signed-rank
test to examine the significance of the results.

F.1 Interactive Task Recognition
The following are the state-of-the-art (SOTA) methods specifically
proposed for interactive task recognition:
• Original + HMM: Hidden Markov model (HMM) was used by
Elbahi et al. [15, 17] for interactive task recognition. We tried
different types of HMMs (GaussianHMM, GMMHMM, Multino-
mialHMM, PoissonHMM and VariationalGaussianHMM) from
the Scikit-Learn hmmlearn package [21] and reported the best
performance.

• Original + CRF : Inspired by prior works from Elbahi et al. [16,
17] that employed conditional random field (CRF), we trained a
CRF model using the Sklearn-crfsuite package [37]. We tuned
hyperparameters c1 and c2 in an exponential space4 and re-
ported the best performance.

• Features + NB, Features + KStar, Features + DT and Features
+ MLP : Koldijk et al. [36] extracted handcrafted features and
trained naive Bayes (NB), KStar, decision tree (DT) and MLP
as classifiers. Accordingly, we trained these four classifiers
on handcrafted features (Table 3) using the implementation
suggested by the authors.

Table 7 shows the results of these evaluations for each method.
Freezing Mouse2Vec already outperforms all SOTA methods, while
fine-tuning it leads to a better performance, with an accuracy of
81.33% (7.78% higher than the best performing SOTA Features+MLP).
The Wilcoxon test validated the significance of the outperformance.
Among the SOTAs, the best method obtained a minor accuracy in-
crement of 1.23%, indicating the difficult of improving performance
for this downstream task.
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Method Accuracy

Original + HMM 42.24±13.42
Original + CRF 49.70±3.55
Features + NB 58.47±5.15
Features + Kstar 70.22±1.51
Features + DT 72.32±1.10
Features + MLP 73.55±2.89

Mouse2Vec Freeze 75.84±3.39*
FineTune 81.33±3.05**

Table 7: Interactive task recognition accuracy (Mean±Std, in percentage) achieved by directly applying Mouse2Vec (Freeze),
fine-tuning Mouse2Vec (FineTune) and the different baselines inspired by existing methods [15–17, 36]. Best results are shown
in bold, and the second best results are underlined. Stars mark the significance levels of difference between Mouse2Vec and the
best SOTA method (*𝑝 < .05, **𝑝 < .01, ***𝑝 < .001).

Method Accuracy

Features & Activities+SVM 68.46±4.43
Features & Activities+RF 69.15±8.10

Features & Activities+LSTM 71.78±5.10

Mouse2Vec Freeze 62.69±3.57**
FineTune 75.82±3.88*

Mouse2Vec
& Activities

Freeze 75.19±2.28*
FineTune 76.79±1.96**

Table 8: Next activity prediction accuracy (Mean±Std, in percentage) achieved by directly applying Mouse2Vec (Freeze), fine-
tuning Mouse2Vec (FineTune) using or not activity history, and the different baselines inspired by existing methods [19, 38, 74].
Best results are shown in bold, and the second best results are underlined. Stars mark the significance levels of difference
between Mouse2Vec and the best SOTA method (*𝑝 < .05, **𝑝 < .01, ***𝑝 < .001).

F.2 Next Activity Prediction
The following prior methods were proposed for next activity pre-
diction:
• Features & Activities + SVM: Fu et al. used a support vector
machine (SVM) on the fusion of handcrafted features and four
history activities to predict the next activity [19]. We fused
handcrafted features with past four activities and implemented
the SVM classifier using Scikit-Learn optimising hyperparame-
ters5 𝐶 ∈ [1, 10, 100, 1000], 𝛾 ∈ [0.001, 0.0001].

• Features & Activities + LSTM: Kwok et al. [38] trained two
separate LSTM models for two types of input – handcrafted
features and five history activities. Then the weighted fusion
of the predictions from the two models was used to generate
final predictions. Following the original implementation, we
tuned the weight 𝛼 between the two inputs in the range of 0.1
to 0.9 with a step size of 0.1 as well as the learning rate in [1e-3,
1e-4], and reported the best result.

• Features & Activities + RF : Zhang et al. [74] used a two-stream
random forest (RF) to predict next activities. While one stream
processed handcrafted features, the other one handled past
seven activities. We implemented RF using Scikit-Learn, tuned
the weight 𝛼 following the original implementation as well
as the number of tree in [10,100,1000], and reported the best
result.

4https://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html
5https://scikit-learn.org/stable/modules/grid_search.html

Given that all the methods used the history of activities as an addi-
tional input, we also built a variant of our method that used this
information. Specifically, we concatenated the Mouse2Vec represen-
tation with the seven most recent activities and used the resulting
vector as the input to the classifier, denoted as Mouse2Vec & Activ-
ities. As Table 8 shows, using mouse behaviour only, fine-tuning
Mouse2Vec outperformed SOTA methods that used activities. After
adding history activities, the frozen Mouse2Vec gained a signifi-
cantly higher accuracy. It improved the accuracy from the best-
performing prior method (3.41% higher than Features & Activities +
LSTM) more than this method improved from the second-best prior
method (2.63% higher than Features & Activities + RF ), indicating
that the improvement of our method is meaningful.

F.3 User Identification
Only one prior work conducted user identification from mouse
data:
• Features + kNN : Chuda et al. used a kNN classifier on the hand-
crafted features to identify users [12]. We implemented the
classifier using Scikit-Learn and optimised the number of near-
est neighbours in [5, 10, 50, 100].

As Table 9 shows, freezing Mouse2Vec achieved significantly higher
accuracies on both datasets, while fine-tuningMouse2Vec improved
the performance even more, e.g., reaching 32.19% accuracy identi-
fying 16 users from ACTIVITY.

https://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html
https://scikit-learn.org/stable/modules/grid_search.html
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Method ACTIVITY EOTT

Features + kNN 15.91±0.53 5.97±0.48

Mouse2Vec Freeze 19.59±0.60* 9.43±0.42**
FineTune 32.19±0.83*** 17.29±1.10**

Table 9: User identification accuracy (Mean±Std, in percentage) achieved by directly applying Mouse2Vec (Freeze), fine-tuning
Mouse2Vec (FineTune) and the different baselines inspired by existing methods [12]. Best results are shown in bold. Stars mark
the significance levels of difference between Mouse2Vec and the SOTA method (*𝑝 < .05, **𝑝 < .01, ***𝑝 < .001).
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