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Abstract. Analysing and modelling interactive behaviour is an impor-
tant topic in human-computer interaction (HCI) and a key requirement
for the development of intelligent interactive systems. Interactive be-
haviour has a sequential (actions happen one after another) and hier-
archical (a sequence of actions forms an activity driven by interaction
goals) structure, which may be similar to the structure of natural lan-
guage. Designed based on such a structure, natural language processing
(NLP) methods have achieved groundbreaking success in various down-
stream tasks. However, few works linked interactive behaviour with nat-
ural language. In this paper, we explore the similarity between interac-
tive behaviour and natural language by applying an NLP method, byte
pair encoding (BPE), to encode mouse and keyboard behaviour. We
then analyse the vocabulary, i.e., the set of action sequences, learnt by
BPE, as well as use the vocabulary to encode the input behaviour for
interactive task recognition. An existing dataset collected in constrained
lab settings and our novel out-of-the-lab dataset were used for evalua-
tion. Results show that this natural language-inspired approach not only
learns action sequences that reflect specific interaction goals, but also
achieves higher F'1 scores on task recognition than other methods. Our
work reveals the similarity between interactive behaviour and natural
language, and presents the potential of applying the new pack of meth-
ods that leverage insights from NLP to model interactive behaviour in
HCI.

Keywords: Interactive Behaviour Modelling - Natural Language Pro-
cessing - Mouse and Keyboard Input - Out-of-the-lab Dataset.

1 Introduction

Computational modelling of interactive behaviour has emerged as a key compo-
nent of intelligent user interfaces (IUIs) in human-computer interaction (HCI)

[66I70i312/14]. For example, understanding interactive behaviour helps HCI re-
searchers and user experience (UX) designers analyse and improve interactive
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Fig.1. Given that both interactive behaviour and natural language are sequential
and hierarchical, we explored their similarity by applying an NLP method (a language
encoder) to model mouse and keyboard behaviour.

systems [517]. Mouse and keyboard input is particularly promising because it
is readily available on a large number of devices and pervasively used in daily
life [66I59]. Interactive behaviour consists of low-level, atomic input actions that
cannot be further decomposed [41], which may resemble characters in natural
language. Furthermore, a sequence of such actions (an activity) that can reflect
higher-level interaction goals may resemble a (sub)word that is a sequence of
characters with semantic meanings. As such, interactive behaviour has both a
sequential (actions happen one after another) and a hierarchical structure (a
sequence of actions forms an activity driven by specific interaction goals), and
hence may be similar to natural language (see Fig. . On the other hand, NLP
methods, leveraging the sequential and hierarchical structure of input data, have
recently achieved groundbreaking success in various downstream tasks like ma-
chine translation and question-answering [A534I32136]. However, analysing the
possible similarity and link between interactive behaviour and natural language
remains under-explored in HCI. One notable exception is the work by Han et
al. that encoded n consecutive actions (like mouse clicks) into tokens to learn
action embeddings [21]. However, at its core, the method uses n-gram, which
limits the length of action sequences to a fixed length n and requires a dedicated
search for its optimal value. Moreover, the vocabulary size grows exponentially
as n increases [57]. Due to such drawback, n-gram has been dropped in NLP
in favour of more flexible methods such as byte pair encoding (BPE) [48/47].
BPE and its variants are used in a significant number of large language models
(LLMs) to encode text as subwords, allowing rare or unseen words to be han-
dled without introducing new tokens every time [54I53]. Additionally, subwords
in the vocabulary generated by BPE can have various lengths, allowing a rich
and flexible vocabulary. In this work, we explore the similarity between mouse
and keyboard behaviour and natural language, by using BPE to learn a vocab-
ulary, i.e., a set of activities, which is further used to encode the behaviour to
perform interactive task recognition. Knowing which task the user is conducting
is essential for adaptive interactive systems that aim to understand interactive
behaviour and interaction goals [44[I7/26].
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Existing mouse and keyboard datasets were typically collected in controlled
laboratory settings, although behaviour tends to be more natural in out-of-the-
lab settings [40]. We evaluate the method on two datasets that cover both set-
tings and offer both modalities. For the lab setting, we chose the Buffalo dataset
collected by Sun et al. [59] as it is the largest available dataset [43]. For the out-
of-the-lab setting, given a lack of suitable publicly available data, we collected
a novel multimodal dataset named EMAKI (Everyday Mouse And Keyboard
Interactions)ﬂ EMAKT was collected from 39 participants performing three inter-
active tasks: text entry and editing, image editing and questionnaire completion.
These tasks can be found in a wide range of applications and Uls, and cover
varying types of mouse and keyboard actions.

On the two datasets, vocabulary analysis shows that BPE could learn explain-
able activities, e.g., reflecting graphical user interface (GUT) layouts and indicat-
ing interaction goals such as performing mouse dragging or keyboard shortcuts.
Results from interactive task recognition show that BPE outperformed other
methods on both modalities and datasets. In summary, our contributions are
three-fold: (1) We collect EMAKI, a novel 39-participant out-of-the-lab mouse
and keyboard dataset. (2) We explore the potential similarity between natu-
ral language and mouse and keyboard behaviour by learning meaningful activi-
ties via a commonly used NLP method, BPE. (3) We show that encoding with
BPE also improves the performance of interactive task recognition. As such,
our work uncovers the similarity between natural language and interactive be-
haviour, showing the potential for applying the new pack of methodology, i.e.,
NLP methods, to computational interactive behaviour modelling in HCI.

2 Related Work

2.1 Modelling Interactive Behaviour in HCI

Classical HCI approaches include descriptive models, e.g., Fitts’s Law [1]], and
predictive models, e.g., the keystroke-level model (KLM) [12]. However, they are
limited in strict controls and modelling simple tasks like pointing to a target
or routine tasks that have to be specified step by step [I2]. Recent research
used 1D convolutional neural networks (CNN) [2825], long short-term memory
(LSTM) [26] and gated recurrent unit (GRU) [26] to encode gaze and head be-
haviour, based on the sequential structure, while others focused on spatial anal-
ysis and modelling [29/28]. Specifically, Xu et al. modelled mouse and keyboard
behaviour by accumulating cursor positions into binary attention maps [66].
Other researchers modelled interactive behaviour from a statistical perspective.
For example, Borji et al. used Hidden Markov Models (HMM) to encode mo-
tor actions including mouse clicks, mouse positions, and joystick positions in
video games [8], while Sun et al. applied Gaussian mixture models (GMM) on
keystrokes in text editing tasks [59]. Researchers also encoded eye movements [11]

! The dataset and code are available here: https://git.hcics.simtech.uni-stuttgart.de/
public-projects/EMAKI
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or gestures [63I55] into strings for activity recognition. Given that interactive be-
haviour has a sequential and hierarchical structure, which may resemble natural
language, we explored modelling interactive behaviour from an NLP perspective.

2.2 Encoding Methods for Natural Language

Recent attractive success in NLP has been largely attributed to methods that
efficiently encode characters [34], words [45] or sentences [50] into a vector rep-
resentation. HCI researchers also followed this trend to model GUIs [3861] or
behavioural differences over time [21I]. A key requirement for such methods is to
encode or tokenise the input to generate a usable vocabulary of concepts. Due to
the clear structure of natural language, NLP methods encode at the character,
subword or word level. One popular approach is n-gram, which uses n words
in a sequence to determine the context where commonly n < 5 [2II3TI30/49].
However, such a method is limited by the choice of n, and the exponential in-
crease of vocabulary size along n. More promising approaches learn a vocabulary
of subwords, among which BPE has been widely used given that it allows rich
and flexible vocabulary and understanding rare or unseen words [62/35/47I48].
Consequently, we employ BPE as the NLP method to create a vocabulary for
interactive behaviour.

2.3 Analysis and Modelling of Mouse and Keyboard Behaviour

The mouse and keyboard are among the most widely used input modalities in
daily interactions with computers [66/59]. Some researchers only focused on one
modality, i.e., mouse or keyboard. Arapakis et al. explored different representa-
tions of mouse movements in web search tasks, including time series, heatmaps,
and trajectory-based images [5], while Antal et al. employed 1D CNN to encode
mouse actions including click and drag [3]. Dhakal et al. analysed keystroke pat-
terns in a transcription typing task by correlation analysis [I4], while Acien et
al. employed LSTM to encode keystroke sequences in free text typing [2]. In
contrast, Sun et al. explored both mouse and keyboard actions in two typing
tasks, yet the work was limited to fully controlled laboratory settings [59].

3 Datasets for Evaluation

Although interactive behaviour, and specifically mouse and keyboard data, has
been widely studied in HCT [59J66], most existing datasets have been collected in
strictly controlled laboratory settings. Laboratory settings have the advantages
of control and internal validity, but their ecological validity is highly limited [4].
Our out-of-the-lab data collection did not control where, when, how long and
via which laptop or desktop participants could join, allowing more natural be-
haviour [40/46]. In addition, most datasets only include either mouse or keyboard
data, while we opted for evaluations on both modalities. As such, we analysed
mouse and keyboard behaviour from the in-the-lab Buffalo dataset [59] and
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EMAKI, a novel multimodal out-of-the-lab dataset that we collected specifically
for this purpose, given lacking suitable publicly available data. To evaluate con-
straints in data collection from a time perspective, task and study completion
times were calculated. The former only counts the time spent on tasks, while
the latter refers to finishing the entire study, including pauses.

3.1 The Buffalo Dataset

To the best of our knowledge, Buffalo [59] is the largest publicly available in-
the-lab dataset containing both mouse and keyboard interactions. The dataset
was collected with standalone keyboards over three sessions. 148 participants
performed two typing tasks: transcribing a pre-defined text and typical office
activities, such as answering predefined questions and sending emails. The aver-
age number of mouse actions and keystrokes per participant exceeded 19K and
17 K, respectively. 75 participants completed both tasks with the same keyboard,
while the remaining used three keyboards across sessions. Data from the former
75 participants were used in this work for a more controlled condition, follow-
ing [65]. The average task completion time was 41.71 mins (SD = 6.34), while
the average study completion time was slightly longer, 41.81 mins (SD = 6.27),
indicating that participants barely took breaks in this constrained setting.

3.2 The EMAKI Dataset

We opted for an online study including three tasks: text entry and editing,
image editing, and questionnaire completion. These tasks can be found in a
wide range of interactive applications and Uls, and cover varying types of mouse
and keyboard actions [66l59]. Furthermore, the tasks are neither limited to a
particular real-world application [I3[9] nor too controlled or artificial [T4U70J7T],
different from the typing-focused tasks in Buffalo. Two short assessments were
designed to analyse if participants show different proficiencies in using mouse
and keyboard.

The study was implemented as a web application and hosted on our university
server. The link to the study was sent directly to the participants. The frontend
was implemented in JavaScript, while the backend consisted of a Node.js server
and an SQLite database. We recorded clicks and key presses with separate events
for press and release, mouse movements and their associated timestamps.

Participants We recruited 52 participants through university mailing lists and
social networks. 12 participants who did not finish the study and one teenage
participant were filtered out, leading to 39 participants in the end (18 female,
18 male and 3 “other gender”). Their ages ranged between 18 and 54 years
(M = 25.05,SD = 6.51). Participants completed the study from 16 countries.
On average, they reported having used mouse and keyboard for 13.64 years
(SD = 6.80). 15 participants used laptop touchpads, while the others used tradi-
tional mice. 28 participants used laptop keyboards and the rest used standalone
keyboards.
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Fig. 2. Screenshots of the three interactive tasks in our online study: (a) text entry
and editing, (b) image editing, and (c) questionnaire completion.

Interactive Tasks In task text entry and editing, participants wrote a piece of
text in English in a text edit01E| for one trial (Fig. ) We did not specify the
topic but offered suggestions, such as “summarise a movie/TV series/documentary
that you recently watched” or “describe your pet”. We asked participants to
write >200 words and apply >15 formatting rules, e.g. change font size or align-
ment. We allowed any operation provided by the editor, such as copy-paste and
undo. Two counters in the top left showed the number of words they already
typed and formatting operations they applied. These counters were initially red
and turned green once the minimum thresholds were reached.

In task image editing, participants were presented with two images shown
side-by-side in an image editotﬂ (Fig. ) The image on the left was a real
photograph, whereas the image on the right was a sketch. On either or both
sides, participants performed operations provided by the editor in any order they
wanted. Candidate operations are drawing, cropping, flipping, rotating, adding
icons and adding filters. To proceed to the next task, they had to perform at
least 100 editing operations. In addition, we asked them to add at least one text
box that contained a minimum of 10 characters. Similarly to the previous task,
counters showed the task progress.

Questionnaire completion involved participants in completing four question-
nairesﬂ7 leading to four trials (Fig. ) These questionnaires served a dual pur-
pose: providing information about participants, which can serve as metadata for
future work on the dataset, while at the same time allowing us to record natural-
istic mouse and keyboard data. The first questionnaire focused on demographics
and included questions on gender, age, country of origin, country of residence,
experience in using mouse and keyboard, and whether participants had any vi-
sual impairments. Afterwards were three widely-used personality questionnaires:
BFI-44 (Big Fiveﬂ BIS-11 (Barratt Impulsiveness Scale)ﬂ and BIS-BAS (the
Behavioural Inhibition and Approach Systemﬂ

2 https://github.com /tinymce/tinymce

3 |https://github.com/nhn /tui.image-editor,

4 |https: //github.com /surveyjs/survey-library

5 lhttps:/ /www.ocf.berkeley.edu/~johnlab /bfi.php

5 |http://www.impulsivity.org /measurement /bis11

" lhttps://local.psy.miami.edu/people/faculty /ccarver /availbale-self-report-instruments,/
bisbas-scales/
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Fig. 3. Two proficiency assessments: (a) text typing and (b) move and click.

Procedure Before starting with the tasks, participants were asked to carefully
read the study goals and task descriptions. They were then asked whether they
were using a mouse or touchpad, and a laptop or standalone keyboard. To start
the study, participants had to click two checkboxes to confirm that (1) they had
read and understood the goals of the study, and (2) their data may be published
and analysed for research purposes. Afterwards, participants performed tasks in
fullscreen. If they left the fullscreen mode during a task, the task was restarted.
We opted for the design to discourage participants from multitasking. To reduce
potential effects of task order, half of the initial 52 participants performed the
text entry and editing task first, followed by the image editing task, while the
other half performed in the inverse order. After data filtering, 24 participants
did the text task and then image task, while the other 15 in the inverse order.
We always showed questionnaires at the end, following studies that also collected
personality questionnaires [24/42]. Detailed guidelines for tasks were available to
participants throughout the study. Participants could contact us whenever they
had questions, felt uncomfortable or unsure of any task or wanted to withdraw.
Upon completion of the study, participants were shown their results of person-
ality questionnaires as compensation. No monetary compensation was made.

Dataset Statistics The average task completion time was 37.40 mins (SD =
13.91), in which 16.60 mins (SD = 8.51) were spent on text entry and editing,
6.15 mins (SD = 3.60) on image editing, and 9.84 mins (SD = 4.48) on question-
naires. The average study completion time was significantly longer, 55.33 mins
(SD = 29.32). In total, we collected 1.14 M mouse actions and 205K keyboard
actions. 38% of mouse actions were generated from the image editing task, 43%
from questionnaire completion, while only 19% came from the text entry and
editing task. Text entry and editing contributed 92% of the keyboard actions,
while only 8% were from the other two tasks (image editing: 3%, questionnaire
completion: 5%).

Assessments of Proficiency Before interactive tasks, our study also included
two short assessments to analyse if participants who used different types of input
devices showed different proficiencies in using mouse and keyboard. The two
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Fig. 4. Overview of our pipeline of exploring modelling interactive behaviour from an
NLP perspective.
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assessments were text typing for keyboard proficiency and move and click for
mouse proficiency, shown in Fig. 3] Text typing involved copying a short piece
of text (~100 words, Fig. ) as quickly as possible [I9]. The average duration
of key presses and the number of keys pressed per minute were calculated as
keyboard metrics [19]. Move and click was inspired by a Fitts’s Law task [56],
where participants clicked an orange dot that randomly appeared at a predefined
location as quickly as possible over multiple rounds. Once clicked, the orange dot
turned grey and another random dot turned orange (Fig. [3p). Fitts’s law [15]
models movement time as MT = a+0blog, (%d), where d is the distance between
the centre of the target and the starting point; w is the width of the target; a
and b are constants that can be interpreted as the delay and the acceleration.
Based on d, w and MT recorded in move and click, we computed a and b via
linear regression and used them as metrics of mouse proficiency.

Based on the type of mouse (touchpad vs. traditional mouse), we split partic-
ipants into two groups and then calculated mouse metrics from data collected in
the mouse assessment. A Mann-Whitney U test showed that both metrics were
significantly different between the two groups. One reason is that touchpad and
traditional mouse lead to different pointing speeds and accuracies [23]. Then,
we split participants into two groups based on using a laptop or standalone key-
board. No significant difference was found in keyboard metrics calculated from
the keyboard assessment.

4 Modelling Interactive Behaviour with an NLP Method

As Fig. 4] shows, the raw data (mouse and keyboard action sequences) are first
segmented into subsequences. Core to our approach is BPE learning a vocab-
ulary of subwords, i.e. a set of meaningful mouse and keyboard activities, and
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then encoding the behaviour based on the vocabulary. As BPE requires discrete
inputs, mouse data are preprocessed additionally using the dispersion-threshold
identification (I-DT) algorithm, that converts continuous-valued mouse coordi-
nates into discrete tokens. The encodings generated by BPE are then evaluated
in two ways to explore if a natural language-like structure exists in mouse and
keyboard behaviour that can be captured by this widely used NLP method: (1)
analyse the semantic meaning of the vocabulary, i.e., interaction goals underly-
ing learnt activities, and (2) as input to train a Transformer-based classifier for
task recognition. The two evaluations are demonstrated in Section

4.1 Data Preprocessing

Different from natural language where words and sentences are separated by
spaces and punctuations, modelling interactive behaviour first requires splitting
data into smaller units. Thus, a sliding non-overlapping window was used to
segment the long raw data. On the keyboard actions, the window lengths L,
were empirically set to 10, 50, and 100. The window lengths L, for the mouse
actions were set to 20, 100 and 200, as we observed on both datasets that, the
number of generated mouse actions for a fixed time window is roughly twice as
many as the keyboard actions. When using both modalities jointly, the window
lengths were set to the mean value of those for single modalities, i.e. Ly =
15, 75 and 150. For keyboard actions, the action type and the key value were
concatenated as a token, e.g., KeyDown_a (al) or KeyUp_Shift (Shift1). Buffalo
recorded 91 key values, while EMAKI had 137 values, yielding 182 and 274
atomic actions forming the starting vocabulary, respectively. With more types
of keys, EMAKI can potentially reflect more behaviour varieties.

Participants completed our study on their own computers with different
screen resolutions, so we first re-scaled the mouse coordinates to [0, 1]. For con-
sistency, we re-scaled Buffalo mouse data to the same range. We observed two
categories of mouse behaviour: pinpoint, i.e. interacting with the target Ul ele-
ment in a small area, where moves are shorter, slower and more concentrated,
resembling gaze fixations; and re-direction between targets, resembling fast sac-
cadic eye movements between fixations [52]. Inspired by gaze fixation detection,
we used I-DT [52] to preprocess mouse data (see Appendix). Then we divided
the screen equally into four areas (0: top-left, 1: top-right, 2: bottom-left, 3:
bottom-right). The action type (move or click), mouse behaviour category (pin-
point or re-direction), and the screen area were concatenated as a token, e.g.,
Mowve_Redirection_Area0 or Click_Pinpoint_Area8. When representing clicks, Buf-
falo only recorded a Click, while we recorded both Down (press) and Up (re-
lease) events. Therefore, Buffalo has 2x2x4=16 atomic actions and EMAKI has
3Ix2x4=24.

4.2 Encoding Mouse and Keyboard Behaviour with BPE

We employed BPE (see Appendix for its algorithm) to learn a vocabulary of
subwords, i.e., activities that consist of various numbers of consecutive actions.
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blue) and 900 (in green) iterations, of (a) mouse, (b) keyboard and (c) both modalities
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the middle line indicates the median length. The y-axes are scaled according to the
range in each subplot.

Starting from the action sequence set D, the vocabulary V is built after k itera-
tions. In each iteration, the most frequent pair of actions or activities form a new
activity, which is added into V' and used to update D. We consider each action
as a character, given it is an inseparable, atomic unit. The initial vocabulary
is composed of actions and one extra token representing the end of the action
sequence from one task trial. Thus, the initial vocabulary sizes are |V|mouse = 17
and |V |key = 183 in Buffalo, and |V |mouse = 25, |V |key = 275 in EMAKI. We set
k to 300, 600 and 900 empirically.

5 Evaluations of the NLP Method

As mentioned at the beginning of Section 4l BPE was evaluated in two ways:
(1) we analysed its vocabulary to examine if the way of learning semantic sub-
words from characters could learn meaningful activities from interactive actions;
and (2) we tested if encoding interactive behaviour in this NLP fashion bene-
fited a downstream task, interactive task recognition, using a Transformer-based
classifier.

5.1 Analysis of the Learnt Vocabulary

We first examined statistics of the vocabulary including its size and activity
lengths. Then we analysed semantic meanings of the most frequent and long
activities. Frequent activities are short, low-level and pervasively exist in various
activities, while long activities reflect high-level and complex goals.

Vocabulary Statistics. As Fig. shows, in EMAKI the maximum length
of mouse activities reached 243 actions (BPE-900), while the median length
was 16. The longest keyboard activity had 53 actions, while the median length
was 3 (Fig. ) When using both modalities jointly, the maximum activity
length was 239 after 900 iterations, while the median length was 4 (Fig. )
In Buffalo, the lengths of activities had a maximum of 405 and a median of
39 from mouse behaviour (Fig. [fh); a maximum of 16 and a median of 4 from
keyboard behaviour (Fig. [fb); and a maximum of 158 and a median of 4 from
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Dataset EMAKI Buffalo

Method |BPE-300{BPE-600/BPE-900/BPE-300/BPE-600BPE-900
Mouse 322 622 921 310 609 909
Keyboard| 513 808 1103 473 770 1067
Both 569 864 1163 496 790 1084

Table 1. Vocabulary sizes generated using BPE after 300, 600 and 900 iterations, on
EMAKTI and Buffalo datasets.

Rank 1 2 3 4 5 6 7 8 9 10

EMAKI|LY, UT|<],<Tlel, ef|t], tT]al, at|o], of|«<={, <1<, < i, if|s], sTnd, nT

Buffalo |}, Ut|<«<|,<Tlel, ef|td, tt]o], of|il, it al, at si, sT|nd, o) 1}, It

Table 2. The ten most frequent keyboard activities found by BPE. The LI symbol
represents Space. The <= symbol means Backspace. The down arrow | and up arrow 1
denote KeyDown and KeyUp, respectively.

joint modalities (Fig. ) Mouse activities were longer than keyboard activities,
indicating that the preprocessed mouse data were more similar compared to
preprocessed keyboard data. Comparisons between datasets show that mouse
activities in EMAKI were more diverse, while Buffalo contained more diverse
keyboard activities.

Table [1| shows the vocabulary sizes generated by BPE on the two datasets.
Note that starting from BPE-k and running the algorithm for k& more iterations,
the vocabulary size increases by approximately k£ elements — showing that BPE
overcomes the issue of exponential growth of vocabulary size in n-gram.

Frequent Activities. The three BPE iterations learnt the same top-10 fre-
quent keyboard action sequences as shown in Table |2l Eight out of ten action
sequences are the same on the two datasets, although they were collected from
different participants in different experimental settings, indicating that gener-
alised patterns underlie keyboard behaviour. The interaction goal behind the
most frequent activity is to press the spacebar, which is in line with the obser-
vation that spaces occur often when typing in various languages. The second
frequent activity reflects an intention of pressing Backspace which is frequently
and widely used to correct what has been typed. Most frequent activities cor-
respond to character keystrokes, and reflect the top-7 most frequent English
letters: “e” (12.15%),“a” (8.67%), “t” (8.60%), “i” (7.53%), “o” (7.38%), “n”
(7.34%) and “s” (6.63%) [20]. The difference in their order may be due to that
the datasets are limited to specific typing scenarios and not representative of
the entire English language. We also noticed that the left and right arrows, for
redirecting typing locations, were also frequent on both datasets.

The most frequent ten mouse action sequences learnt by BPE were also the
same on the two datasets. All of them are mouse moves of pinpoint, implying
that participants follow similar ways to interact with Ul targets even in differ-
ent tasks and settings. These pinpointing regions were primarily in the top-left
and bottom-left areas, while fewer pinpoints fell on the right side. This matches
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the layouts of not only general GUIs but also those used in our user study. For
example, menu bars and sidebars are commonly at the top and to the left of
interactive windows, respectively. Also, our text formatting tools were at the
top of the text editor. The image editing tools were in the leftmost of the im-
age editor. Additionally, our questionnaires were left-aligned, so the choices for
participants to click lay to the left.

Interaction Goals behind Activities. We also analysed long activities to ex-
amine if BPE learnt a hierarchy, i.e., if atomic actions form meaningful activities
driven by complex goals. An example is “Dot], Dott, Spacel, Spacef, Shift],
i}, it, Shiftf, Spacel, Spacet”. The goal behind the whole sequence is to start
a sentence with the word “I”, in line with the common texting or typing sce-
nario of writing about oneself. It consisted of the low-level goal of pressing each
aforementioned key, which was further composed of atomic actions KeyDown
and KeyUp. BPE also learnt “Spacel, Spacef, Backspace|, Backspace!” from
EMAKI, suggesting that participants typed at a faster pace than their thought
process. Another example is “Ctrll, s/, st, Ctrl1” from Buffalo, representing the
shortcut for saving files. Looking at mouse behaviour, BPE captured drag be-
haviour, represented as a MouseDown action followed by multiple MouseMove
actions and ending with a MouseUp action. Another learnt long activity had 37
actions with 35 moves and a click as pinpoint in area 0, reflecting the goal of
adjusting the cursor to a target and then clicking.

5.2 Interactive Task Recognition

We also evaluated the practical effectiveness of our approach on interactive task
recognition. Knowing which task a user is performing enables adaptive Uls to
understand the interactive behaviour and goals [26]27]. We compared our ap-
proach with two baselines: an ablated version which bypasses encoding (noted
as NoEncoding) and replacing BPE with an autoencoder (AE). Autoencoder,
consisting of an encoder and a decoder, is trained in a self-supervised way to re-
construct the input with the lowest error. Therefore, it needs no annotations and
has a high generalisability, also used on language data [37]. To control variables,
i.e., restrict the comparison to the encoding, we set two rules: (1) to reduce the
impact of sophisticated designs of the encoders, use vanilla AE and BPE; (2)
use the same hyperparameter sets for the classifier.

We implemented an AE that includes four components: an embedding layer of
dimension d. = 128 to handle discrete tokens; an encoder component composed
of one to three fully connected (FC) layers with hidden dimensions (64), (64, 32)
and (64,32, 16); a decoder component, which is symmetric to the encoder; and a
reconstruction component consisting of an FC layer and a softmax layer. Dropout
was added after FC layers to avoid overfitting. We denote the autoencoder that
has one, two, or three FC layers in the encoder and decoder components as AE-
1, AE-2 and AE-3. Cross entropy between the reconstructed sequences and the
input was used as the loss function. After training, the encoder component was
used to encode interactive behaviour.
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Our task classifier is based on a Transformer [60], which is well known for its
success in NLP and capability to handle long dependencies in temporal signals.
The classifier is composed of N = {2,4,6} Transformer encoder layers, then
an FC and softmax layer. Each Transformer encoder layer had h = 4 attention
heads, dmodel = {16,64} expected features, dg = 4dmodel dimension in feedfor-
ward layers and uses the ReLLU activation function. During training, we applied
label smoothing with ¢ = 0.1 [60]. We used AdamW optimizer with learning
rate Ir = {1073,107%} and 8 = (0.9,0.999) [I0] and the cross entropy as loss
function. The training was done on a Tesla V100 GPU with a batch size of 64
and a dropout rate of 0.5. The classifier was trained for 30 epochs, while the AE
was trained for 10 epochs because of its faster convergence. Because activities in
the flexible vocabulary learnt by BPE have different lengths, we padded short
samples and applied padding masks.

EMAKI has three main interactive tasks, posing a three-class classification
problem, while Buffalo has two tasks, posing a binary classification problem. The
evaluation follows 5-fold participant-independent cross-validation, where data
from 80% of participants form the training set and the remaining participants
form the test set. This scheme can evaluate the performance of unseen users.
Macro F1 score [24] was chosen as evaluation metric because of the imbalanced
classes, e.g., most keyboard data were from the text task on EMAKI. For each
model, we report the highest F1 score achieved among all the parameter sets.
Results show that on both datasets methods using BPE encoding outperformed
the others (see Fig. [6] and [7).

Results on EMAKI On mouse data, BPE-300 consistently outperformed
other methods (Fig. [bh). A one-way ANOVA test showed that differences be-
tween methods are significant (p<.001): F=9.697 on L,,;,=200, F'=12.396 on
Lin=100 and F=7.194 on L,,;,=20. A post-hoc Tukey HSD test further con-
firmed that BPE-300 significantly outperformed the other methods on L, =200,
Lyin=100 (p<.001 for AE and p<.05 for NoEncoding) and L.,;,=20 (p<.01 for
both AE and NoEncoding). Fig. |§|b shows that BPE-600 achieved the best re-
sults for Lq;,=100 and L.,;,=50, whereas when L,,;,=10 the best was BPE-300.
Differences between methods are significant (F'=13.044, p<.001 for L,,;,=100,
F=4.620, p<.01 for L,,;,=50 and F'=4.220, p<.01 for L,,;,=10). Post-hoc Tukey
HSD tests confirmed that BPE-600 significantly outperformed NoEncoding (p<.01)
and AE-1 (p<.001) for Ly;,,=100. On joint modalities, BPE-300 performed the
best, with the highest F1 score of 0.693 (Fig. @:) Differences between methods
were again significant with F'=13.996, p<.001 on L,;,=150, F'=5.678, p<.001
on L;»n=75 and F'=2.665, p<.05 on L,,;,=15. Tukey HSD test indicated that
BPE-300 significantly outperformed AE (p<.01) and NoEncoding (p<.05) on
L.in=150 and both of them at p<.05 when L.,;,=75.

In Section [3:2] we report that participants using touchpads and traditional
mice show different proficiencies. Therefore, we analysed if such differences af-
fected task recognition. We separately performed 5-fold cross-validation based
on the two groups. Since 24 participants used traditional mice while only 15
used touchpads, we randomly selected 15 traditional mouse users to reduce the
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Fig. 6. F1 scores of recognising three interactive tasks on EMAKI from (a) mouse,
(b) keyboard and (c) both modalities, segmented by different windows. Error bars
represent the standard deviation from a 5-fold cross-validation.

influence of data amount on performance. Because BPE-300 on the longest win-
dow achieved the best results on mouse data (Fig.[6p), we used the same setting
and did a Mann-Whitney U test on F1 scores achieved from two groups. To
mitigate the randomisation introduced by participant selection, we repeated the
above procedure five times. None of the five tests found a significant difference
in performance. The reason may be that our method does not explicitly encode
time information, thus ignoring the speed difference in moving the cursor [23].

Results on Bujffalo On mouse data (Fig. Ea), BPE-300 performed the best
and got the highest F1 score of 0.547. One-way ANOVA showed that differ-
ences between methods were significant (p<.001) with F'=20.345 for L, =200,
F=18.609 for L,;,=100 and F'=5.589 for L,,;,,=20). Post-hoc Tukey HSD tests
showed that BPE-300 significantly outperformed NoEncoding (p<.05) and AE-1
(p<.001) when Lu,;=200. On keyboard data (Fig. [7b), BPE-900 and BPE-600
outperformed other methods. Differences between methods are significant with
F=30.218 for L,;,=100, F=5.884 for L.,,;,=50 (both p<.001) and F=4.791,
p<.01 for L,;,=10. According to post-hoc Tukey HSD tests, BPE-900 signifi-
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Fig. 7. F1 scores of recognising two interactive tasks on Buffalo from (a) mouse, (b)
keyboard and (c) both modalities, segmented by different windows. Error bars represent
the standard deviation from a 5-fold cross-validation.

cantly outperformed AE-1 (p<.01) and NoEncoding (p<.05) when Ly, =100,
and BPE-600 significantly outperformed AE-1 (p<.001) when L,;,,=50. On joint
modalities (Fig. [7c), BPE resulted in similar yet higher F1 scores than baselines.
The best result was achieved by BPE-600 on the longest window of 0.701. Differ-
ences between methods were again significant (p<.001): F=10.733 for L,,;,=150;
F=11.151 for L,;,=75; and F'=7.397 for L,,;,=15. Tukey HSD test showed that
BPE-600 significantly outperformed AE-2 (p<.01) and NoEncoding (p<.05) on
Lyin=150; BPE-300 outperformed AE-1 (p<.01) and NoEncoding (p<.05) on
Lyin=T75; and BPE-600 outperformed AE-3 (p<.05) on L., =15.

It is noticeable that results obtained from Buffalo mouse data slightly ex-
ceeded the chance level and were much worse than those from keyboard data. A
possible reason is that the mouse behaviour on the Buffalo dataset was similar
across different tasks. To verify this, we calculated the average distances between
mouse trajectories in different interactive tasks, following [64]: (1) all the mouse
actions generated in one trial by one participant were considered one trajectory,
on which 101 points were sampled uniformly; (2) the distance between two trials
was defined as the average Euclidean distance between each pair of points on
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Fig. 8. Distribution of the average Euclidean distances between mouse trajectories from
different interactive tasks on the two datasets. Smaller distances mean that trajectories
from different tasks are more similar.

two trajectories; (3) the distance between two tasks was computed as the aver-
age distance between each trial from task 1 and each from task 2. Fig. [§ shows
that the distance between tasks from Buffalo is smaller than EMAKI, suggest-
ing that mouse behaviour generated from the two tasks from Buffalo is similar,
consistent with the statistics of BPE vocabulary (Section [.1)). Therefore, it is
more difficult to classify tasks based on Buffalo mouse data.

6 Discussion

6.1 Modelling Interactive Behaviour from a Natural Language
Perspective

Our work is among the first to explore the similarity between interactive be-
haviour and natural language, given that both have a sequential and hierarchical
structure. Towards this goal, we applied BPE, which has been commonly used in
state-of-the-art large language models to encode mouse and keyboard behaviour.
At the lowest level, input actions were considered as characters since they are
atomic and inseparable. For higher levels, BPE learned “subwords” from interac-
tive behaviour, which were interactive activities, i.e., action sequences driven by
underlying interaction goals. The analysis of the learnt vocabulary showed that
following the same way of learning the semantic hierarchy of language, BPE was
able to capture meaningful activities such as mouse drags, keyboard shortcuts
and precisely adjusting the mouse to click on a Ul element (Section [5.1]). Despite
representing just a first exploration, the insights from our analysis underline the
similarity between interactive behaviour and natural language, and indicate the
possibility of applying more powerful NLP methods like BERT [32/39] to encode
interactive behaviour. Besides the state-of-the-art performances achieved, such
LLMs also have noticeable advantages of generalisability and reusability. They
can be pretrained on one dataset and re-used to encode other datasets to solve
various downstream tasks with fine-tuning, which is more cost-effective than
dedicating a specific large model towards each dataset or task [58]. Future HCI
research can follow such NLP methods to build reusable pretrained interactive
behaviour models for better generalisability and cost-effectiveness.
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6.2 NLP Encoding for Interactive Task Recognition

Interactive task recognition is one of the key requirements of intelligent interac-
tive systems to understand and adapt to interactive behaviour and interaction
goals [44IT7JIR8I33]. On this recognition task, encoding with BPE significantly
outperformed baselines on both datasets, all the modalities and windows. Specifi-
cally, on our out-of-the-lab, newly collected EMAKI dataset, encoding with BPE
obtained the highest F1 score of 0.703 recognising three tasks (Fig. @ On aver-
age, BPE improved the F'1 score by 0.087 on keyboard data, 0.051 on mouse, and
0.044 on the joint modalities. On the Buffalo dataset, BPE achieved the highest
F1 score of 0.865 (Fig. recognising two tasks. On average, BPE improved
the F1 score by 0.080 on joint modalities, 0.053 on keyboard data and 0.035
on mouse data. These results, from a practical perspective, further reveal the
promising effectiveness of modelling interactive behaviour as natural language.

We observed that methods generally achieved better results on longer win-
dows, which may be due to that more actions may uncover richer characteristics
of the tasks. However, increasing the window size yields fewer training samples
and makes the recognition model wait longer for a complete window of actions
to provide a prediction. In our experiments, windows that led to the best perfor-
mance on mouse, keyboard and joint modalities had 200, 100 and 150 actions,
respectively. These values can be a reference for future mouse and keyboard
behaviour modelling methods.

In addition, on both datasets, using BPE on keyboard behaviour improved
the F1 score more than on mouse behaviour, indicating its better ability of han-
dling keyboard than mouse behaviour. This finding is expected, as typing on
a keyboard is directly linked to expressing natural language. A second reason
might be that discretising mouse data caused a loss of information [67J68]. On
the joint modalities, we observed a general performance improvement from in-
dividual modalities on EMAKI, but not on Buffalo. As shown in Section [5.2
Buffalo lacks the diversity in mouse behaviour and thus performance achieved
by combining mouse and keyboard is in-between that of individual modality.

6.3 EMAKI Dataset

Most publicly available mouse and keyboard datasets were collected in con-
strained laboratory settings, such as the Buffalo dataset. In contrast, our EMAKI
is a step towards fully unconstrained settings to allow more natural interactive
behaviour. Our study did not control where, when, or how long participants
joined the study. In addition, participants used their own devices, which con-
tributes to ecological validity. Consequently, our participant pool is more diverse
given that participants are from different countries, and used different input de-
vices and screen resolutions. All of Buffalo’s participants were university students
between 20-30 years old, while ours were between 18-54 and covered non-student
participants. Moreover, our participants spent various time on tasks as they were
freer to pause and resume (as shown in Section and . Buffalo primarily
uses typing-focused tasks, while EMAKI has complementary characteristics and
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tasks — like image editing and questionnaires — encouraging diverse mouse be-
haviour, as confirmed by our analysis in Section [5.1} Furthermore, higher diver-
sity in behaviour can lead to better task recognition performance (Section .
We also verified that the amount of data in EMAKI is sufficient for training
the method for task recognition (see Appendix). Besides serving as a benchmark
for task recognition, the questionnaires included in EMAKI also encourage fu-
ture research on the interplay between multimodal behaviour and personality
traits [71].

6.4 Limitations and Future Work

Our user study covered diverse but predefined tasks and did not allow multi-
tasking. In the future, we will move towards fully uncontrolled settings. Time
information may further improve behaviour modelling [6/T6] and will be explic-
itly encoded in future work. We chose BPE over N-gram due to its flexibility,
yet for systems where activities have similar lengths, N-gram might be efficient
enough. An interesting future work is to explore the boundary of where the
methods lead over the other. Also, even used on both modalities jointly, BPE
learned activities composed of single modalities. A possible reason is that the
behaviour of switching between mouse and keyboard is diverse, which BPE could
not capture. Future work can explore the use of other NLP methods to better
learn the interplay between mouse and keyboard behaviour [39/48/47]. Automatic
interpreters can be studied to identify meaningful and interesting insights into
behaviour from the BPE vocabulary, instead of human interpretation. Moreover,
we intend to study other interactive modalities, such as screen touch and mid-air
gesture, as well as other HCI downstream tasks like personality recognition.

7 Conclusion

We explored the similarity between interactive behaviour and natural language,
given that both of them have a sequential and hierarchical structure. Towards
the goal, we applied a widely used NLP method, BPE, to encode mouse and key-
board behaviour by learning its subwords, i.e., activities. Results on an existing
controlled dataset and a novel out-of-the-lab dataset showed that the method
can capture meaningful activities. Moreover, encoding with BPE significantly
improved interactive task recognition, which is commonly required in intelligent
interactive systems. Taken together, our exploratory work links interactive be-
haviour with natural language and provides a promising NLP perspective for
modelling interactive behaviour, which has the potential to improve the gener-
alisability of computational interactive behaviour models (Section and also
performances of interactive behaviour-based HCI tasks.
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A Preprocessing Mouse Data with I-DT

As written in Section the Dispersion-threshold identification (I-DT) algo-
rithm [52] was used to categorise mouse behaviour to pinpointing a target (re-
sembling gaze fixations) and re-direction between targets. I-DT operates on a
window of duration-threshold consecutive samples. On this window, it calculates
the dispersion value as Dispersion = [maz(x) —min(z)]+ [maz(y) —min(y)]. If
the dispersion value exceeds the dispersion threshold, samples inside the window
are not considered to belong to a pinpoint and the window is slid forward by one
sample. If the value is below the threshold, the samples within the window are
considered to belong to a pinpoint. The window then expands to incorporate new
samples until the dispersion value is above the threshold again. We empirically
set the duration threshold to 100 ms and the dispersion threshold to 0.1.

B The Algorithm of Byte Pair Encoding

Algorithm 1] shows how byte pair encoding (BPE) constructs the vocabulary V,
as introduced in Section [£.2

C Analysis of EMAKI Data Amount for Interactive Task
Recognition

As written in Section [6.3] we evaluated if the size of EMAKI allows our data-
driven method to recognise interactive tasks. We used different percentages of
the training set to train the method and examined their performances. According
to Figure 6k, the best results were achieved by BPE-300 when windows have 150
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Algorithm 1 Byte pair encoding (BPE) [69/22]
Input: action sequence set D, the number of iterations k
procedure BPE(D, k)
V' « all unique actions in D
for i <~ 1to k do
tr,tr < Most frequent two consecutive units (actions or activities) in D

thew < L + 1R > Merge to form a new activity
V « V + [tuew]
Replace each occurrence of tr,,tr with thew in D

end for

return V

end procedure
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Fig. 9. F1 scores of interactive task recognition achieved by BPE, trained on different
percentages of the training set.

actions. Therefore, we followed the above setting. Fig. [0] shows the results of
interactive task recognition by training the model with 1%, 5%, 15%, 25%, 50%,
75% of randomly selected training instances, as well as with the entire training
set (100%). It can be seen that as the percentage increases, the F1 score first
increases fast (before 25%) but then slowly (25% to 75%). The increase in F1
score from using 75% of training data and the entire training set was subtle
(only 0.004). Taken together, the amount of data in our dataset is sufficient to
perform interactive task recognition.
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