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ABSTRACT

We present a computational model to predict users’ spatio-
temporal visual attention on WIMP-style (windows, icons,
menus, pointer) graphical user interfaces. Like existing mod-
els of bottom-up visual attention in computer vision, our
model does not require any eye tracking equipment. Instead,
it predicts attention solely using information available to the
interface, specifically users’ mouse and keyboard input as
well as the Ul components they interact with. To study our
model in a principled way, we further introduce a method to
synthesize user interface layouts that are functionally equiva-
lent to real-world interfaces, such as from Gmail, Facebook,
or GitHub. We first quantitatively analyze attention allocation
and its correlation with user input and UI components using
ground-truth gaze, mouse, and keyboard data of 18 partici-
pants performing a text editing task. We then show that our
model predicts attention maps more accurately than state-of-
the-art methods. Our results underline the significant poten-
tial of spatio-temporal attention modeling for user interface
evaluation, optimization, or even simulation.
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INTRODUCTION

Human gaze serves a dual purpose in human-computer inter-
action. For one, gaze is appealing for hands-free interaction
with pervasive interfaces, since it is faster than the mouse for
pointing [44] and intuitive and natural to use [52]. Gaze there-
fore has a long history as an input modality for tasks ranging
from desktop control [27], eye typing [35] and target selec-
tion [47] to password entry [10], cross-device content trans-
fer [51], and notification display [19]. Common to all of these
uses is that gaze is implemented as an explicit input, i.e. an
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Figure 1: We present a computational model to predict users’
spatio-temporal visual attention on a graphical user interface
based solely on information about the interface as well as
users’ mouse and keyboard input.

input that users actively employ to interact with an interface.
At the same time, gaze naturally indicates what we are inter-
ested in and what we attend to. Gaze has therefore also been
used as an implicit input, e.g. for recognition of users’ activi-
ties and cognitive processes [11, 12] or as a measure of users’
visual attention while interacting with a user interface [9, 33].

A fundamental limitation for both uses of gaze in human-
computer interaction is that estimating gaze requires special-
purpose eye tracking equipment. Unfortunately, eye trackers
may not always be available, have to be calibrated to each
user prior to first use, and tracking is limited to a confined
area in front of the interface [34]. Even more importantly,
eye trackers themselves only provide users’ current and past
gaze locations. They do not provide information on which
locations or components the user will likely attend to or in-
teract with in the future. Such information is valuable for in-
telligent user interfaces, for example, to proactively adapt to
users’ needs [42]. While computer vision methods that only
require ordinary cameras have matured considerably [55, 57],
they are still inferior in terms of gaze estimation accuracy.

A promising solution to both problems may be provided by
computational models of visual attention, i.e. models that
mimic basic perceptual concepts to reproduce human atten-
tive behavior [25]. Typically taking a single image as input,
these models aim to predict those locations whose local vi-
sual attributes significantly differ from the surrounding im-
age, and which are therefore most likely to be attended to
next by the observer. Originally introduced in neuroscience,
these models were successful in a range of fields, most no-
tably computer vision for tasks such as object detection or
image segmentation. Despite close parallels to interactive sys-
tems, such as the problem of predicting the next interaction
location, few works have investigated the use of such mod-



els [36, 48]. However, existing attention models are limited
because they mainly rely on visual components, and they cap-
ture neither user input, such as from mouse and keyboard, nor
interface information, such as components, nor do they take
the history of user interactions with the interface into account.

We aim to address these limitations by presenting a computa-
tional model to predict users’ spatio-temporal visual attention
on WIMP-style (windows, icons, menus, pointer) graphical
user interfaces. Like existing models of bottom-up visual at-
tention in computer vision, our model does not require any
eye tracking equipment. Instead, it predicts attention solely
using information available to the interface, specifically users’
past mouse and keyboard input actions and the Ul compo-
nents they interacted with. This is in contrast to computer
vision models that use only image features, such as intensity,
color or orientation [25]. To study our model in a princi-
pled way, we introduce a method to synthesize new user in-
terface layouts that are functionally equivalent to real-world
interfaces, such as from Gmail, Facebook, or GitHub. Finally,
using these synthesized layouts, we quantitatively analyze at-
tention allocation and its correlation with user input and Ul
components using ground-truth gaze, mouse, and keyboard
data of 18 participants performing a text editing task. We
further show that our model predicts attention maps more ac-
curately than state-of-the-art methods.

We believe that computational modeling of spatio-temporal
visual attention in the GUI space has significant potential to
answer fundamental questions relevant for attentive user inter-
faces, such as how well attention is aligned and coordinated
with other input, e.g. from mouse and keyboard, how and
when users allocate their attention to different GUI compo-
nents relevant for a given task, how they develop and employ
task-specific attention allocation behavior, and how consis-
tent such behavior is for one user and across different users.

RELATED WORK

Our work builds on existing methods for (1) computational
modeling of visual attention, (2) gaze prediction from other
input modalities, (3) modeling and prediction of user behav-
ior during user interface interactions.

Computational Modeling of Visual Attention

Modeling visual attention is an active area of research [4].
Current attention models either take only visual features cal-
culated from an image (so-called bottom-up models) or task-
related features (top-down models) as input. The output is a
map that topographically encodes the probability of visual at-
tention over the whole image. Itti et al. proposed one of the
first bottom-up models [26]. The model computes normalized
center-surround difference maps of individual image features,
such as orientation, intensity and contrast. Other approaches
predicted attention using Bayesian models [56], information
maximization [7], bottom-up graphical models [22], and re-
gion covariance [18]. To incorporate temporal information,
more recent models fuse static and dynamic attention maps,
for example, to estimate visual attention in video [8, 31].
Similarly, data-driven approaches that use machine learning
and large amounts of training gaze data have become popular,

such as SALICON [28] and the Judd model [30]. Because
bottom-up models use only image information, their perfor-
mance degrades considerably for situations in which attention
is mainly influenced by top-down factors, such as the user’s
intent, goals, or tasks. To address this limitation, another line
of research focused on modeling attention from top-down fac-
tors, such as task [39] or scene context [16].

In contrast, only a few previous works investigated the use
of bottom-up models for HCI purposes. Masciocchi et al.
and Still et al. showed that attention maps generated using
the original Itti model [25] correlate well with fixations dur-
ing free-viewing of web pages [36, 48]. Shen and Zhao [43]
developed a learning-based bottom-up model to predict atten-
tion on web pages while Borji et al. [5] introduced a method
for computational modeling of top-down visual attention in
driving video games. In contrast, our model is suited for gen-
eral WIMP-style user interfaces and is explicitly designed for
non-free-viewing conditions, i.e. conditions in which the user
performs a particular task, since these conditions are most im-
portant for interactive human-computer interfaces.

Gaze Prediction from Other Input Modalities

To address challenges associated with eye tracker availability
and usability, a large body of work explored the use of other
input modalities as a gaze replacement. For example, sev-
eral works demonstrated that mouse position can be used as
a proxy for gaze location [1, 2, 21, 24, 37] and mouse click
positions can be even used to calibrate an eye tracker [49].
Other works studied the correlation between cursor position
and gaze in more detail, including the temporal relationship
between gaze and cursor. For example, Bieg et al. [3] showed
that gaze generally leads the mouse cursor, while Liebling
and Dumais [32] studied the temporal relationship between
cursor and gaze and showed that they get closest around 100
— 250 ms before a click event. A similar relationship was
identified between typing behavior and gaze location [29, 53].
Other works investigated eye-hand coordination during spe-
cific tasks, such as target selection [45], visual search [3, 15],
web browsing [13], or web search [23, 38, 41]. None of these
works integrated information from multiple inputs, such as
mouse and keyboard, into a joint model, nor did they combine
these inputs with information about interface components or
past actions of the user to predict attention spatio-temporally.

Modeling User Behavior in Ul Interactions

Given that users’ input is closely related to their tasks, sev-
eral works used them as features to model user behavior in
UI interactions. Mouse movements and position, for exam-
ple, were used to infer user intent during web search [20],
user states in video browsing [54], or user tasks in e-learning
applications [17]. Others directly incorporated gaze informa-
tion to recognize user activities in web [14] and visualization
interfaces [50, 46]. In contrast to what is proposed here, all of
these methods focused on user modeling and activity recogni-
tion. The link to attention prediction, in particular in a spatio-
temporal fashion and for general-purpose user interfaces, as
well as the idea of combining multiple inputs with informa-
tion about the interface, were not considered.
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Figure 2: Application scenarios, sampled products, and
groups of Ul components for text editing tasks. Compo-
nents are grouped into eight categories: title/short description
(G1), main content (G2), text formatting (G3), meta informa-
tion/setting (G4), finish button (G5), profile icon (G6), image
(G7), and new window (G8).
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Figure 3: To synthesize new interfaces for the text editing
task, we group UI components by functionality and randomly
place them into four areas around the main input area.

MODELING INTERACTION PATTERNS

In this work, we take a data-driven approach to analyze and
predict visual attention in the GUI space. We chose text edit-
ing interfaces because they represent real-world interactive
tasks in terms of the most common styles of interactions re-
lated to GUI. To maximize the generality of the model and
analysis, it is essential to collect data covering a range of dif-
ferent Ul layouts and functionalities. However, the variation
of real-world implementations is huge and it is challenging to
collect a sufficient amount of samples.

To address these problems, we first create a generic model of
Uls based on real-world examples. This model is not only
beneficial to synthesize realistic Ul pattern samples for data
collection, but also guides the feature design for learning-
based attention prediction.

() (b)

Figure 4: Sample real-world application interfaces for Gmail
(a) and Blogger (b) with overlaid color masks indicating the
different functional UI groups.

Real-World Ul Samples

To cover the most frequent uses of text editing in everyday
life, we first sampled 8 web application examples from the
most popular websites: writing an email (Gmail), composing
a blog (Blogger), commenting on a photo on a social network
(Instagram), posting a status on a social network (Facebook),
sharing a link (Tumblr), posting a short message (Twitter),
writing a product review for online shopping (Amazon), and
documenting code (GitHub README).

Figure 4 shows examples of the Ul samples. From these ex-
amples, we can see that UI layouts and functionalities are not
completely random but are composed of some common de-
sign patterns. These UI patterns can be characterized by 1)
functionalities, 2) layout, and 3) appearances.

Functionality

Although each application is composed of various UI ele-
ments, their fundamental functionalities can be summarized
into fewer categories. We first grouped each UI compo-
nents into several function categories: title/short description
(G1), main content (G2), text formatting (G3), meta informa-
tion/setting (G4), finish button (GS5), profile photo (G6), im-
age (G7) and new window (G8).

Figure 2 shows how these function categories correspond to
the real-world examples. It can be seen that the categoriza-
tion is general enough to cover real-world variations of the
UI patterns.

Layout

We characterized different Ul layout patterns using a layout
grid. The grid consists of a main text area and four spaces,
left, right, top and bottom to the main text area (see Figure 3).
Figure 4 (a)-(b) show how each UI example corresponds to
the layout grid.

Appearance

In contrast to the functionality and layout, it can be seen that
appearance of the design pattern has a larger degree of free-
dom. At least from the examples above, we cannot observe
any tendencies about color and size of the Ul components.
This indicates the fundamental difficulty of attention predic-
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Figure 5: Sample synthesized interfaces for email (a, b) and
blog (c, d). The interfaces have randomized layouts but con-
tain UI components with the same functionality as the real-
world interfaces.

tion during text editing tasks: visual information becomes
less significant in this case.

Layout Synthesis

Based on these observations, we define our UI model as fol-
lows. We first identify key UI components for each applica-
tion example and match the components across different ap-
plications; for example, a “send” button for sending an email
is matched with a “publish” button for publishing a blog. In
other words, one application definition gives a subset of func-
tion categories with application-specific semantic definitions.

Given these function lists, we further randomized the position-
ing of UI components by assigning the location of each Ul
group into the layout grid. G1 and G2 always corresponded to
the text area, and the UI components G3, G4, G5, G6, and G7
were arranged into these four subareas as groups, as shown in
Figure 5 (a)-(d). In each subarea, the number of UI groups
was set to no more than three to avoid clutter. For G8, which
refers to pop-up windows such as the input form where the
user supplies a URL when inserting a link, it was always set
to the center when it became visible.

For UI appearance we used a consistent design for the size,
texture and icon background to remove the bias caused by the
specific samples that we chose. To increase the appearance
variation, we randomly assigned the color theme for each task,
choosing from 4 options: blue, green, red, and yellow.

DATA COLLECTION
We used our method to synthesize 30 different — yet func-
tionally equivalent — user interface layouts derived from real-

world interfaces, such as Gmail, Facebook, and GitHub (see
Figure 2). We then designed a user study to collect behav-
ioral data (mouse, keyboard, and gaze behavior) of multiple
users interacting with these different layouts. This approach
allowed us to collect large amounts of data that covers realis-
tic daily-life interaction scenarios.

Participants and Apparatus

We recruited 18 participants (6 females and 12 males, aged
between 20 and 30 years) through mailing lists. They were
paid 10 EUR for participating in our one-hour recording. All
participants used at least one of the applications on a daily
basis. All of them had normal or corrected-to-normal vision.

The experiment was conducted on a desktop PC and a dis-
play with a resolution of 1920 x 1200 px and refresh rate of
60 Hz. Stabilizing their heads using a chinrest, the distance
of their eyes from the screen was about 55 cm. Gaze data
was recorded using a Tobii TX300 stationary eye tracker run-
ning at 300 Hz and providing an accuracy of 0.5°. We used
the Tobii Studio software to analyze the gaze data; fixations
and saccades were automatically detected by the software us-
ing default parameters. An optical mouse was used with the
same sensitivity and acceleration for all participants. The ex-
periment software was run in a Chrome web browser in full-
screen mode (black background). We implemented the soft-
ware in JavaScript to log the meta information of Uls and
users’ activities. Specifically, we logged the positioning and
appearance of UI components and recorded the time series of
mouse positions (X, y) where the origin is the upper left corner
of the screen, mouse clicks, keyboard typing, and dynamic
changes of Uls such as the appearance of float windows and
drop-down menus.

Procedure

The experiment was split into three recording sessions with 6—
7 text editing tasks each. We calibrated the eye tracker before
each session using Tobii’s default 9-point calibration routine.
To reduce fatigue, participants took at least a 2-minute break
between sessions. The order of tasks was randomized across
participants. The UI layout of each task was selected from
30 layouts covering eight real-world interfaces as described
in the previous section. The color theme was randomly se-
lected from 4 options. Before each task we provided partic-
ipants with a general and vague hint as to what they could
write about (e.g. “Please write a blog entry about your home-
town”, “Please write an email to invite your friend for din-
ner”) to reduce the time and effort required to contemplate
the content. The synthetic GUIs were fully functional and
participants were encouraged to use their full functionality,
including text formatting, but also to complete the text edit-
ing task as quickly as possible by writing a chunk of text no
more than five sentences long. On average, the overall study
time of each participant was one hour, and the participants
performed 6.1 (o = 6.6) mouse clicks per task.

In total, we recorded gaze and interaction data for 245 text
editing tasks. We recorded 34,695 fixations, 3,884 mouse
clicks, and 43,158 key presses. The average completion time
for one task was 98.4 s (0 = 73.8s). After the experiment, we



asked participants to rate the realism of the text editing tasks
compared to what they were used to in their daily lives from
1 to 5 (1: not realistic at all, 5: fully realistic). The average
rating was 4.3 (o = 0.7).

ANALYSIS OF VISUAL ATTENTION

Several previous works investigated correlations between
gaze and mouse movements [13, 41] as well as gaze and
cursor position [23] in specific tasks, such as web brows-
ing. However, none of these works compared users’ visual
attention, mouse and keyboard input, and interaction behav-
ior with UI components on a graphical user interface in a con-
trolled and principled manner. The analysis gives us a general
overview on how visual attention is allocated in the UI space,
and guides us in establishing the attention prediction model.

Correlations with User Input

We first analyzed the correlation between attention and user
input including mouse and cursor. Figure 6 shows an exam-
ple for one user-task pair. As illustrated in Figure 6 (b), we
observed 3 frequent patterns of the interaction between atten-
tion (eye), action (mouse and keyboard) and user interface in
the coordinate space (AAUC), including pattern 1) mouse fol-
lowing the eye, pattern 2) eye focusing on cursor during text
editing, and pattern 3) mouse remaining stationary while the
eye inspected text content or Ul components.

To evaluate this observation quantitatively, we examined the
correlation between eye movement and user input. For mouse
input, we used the recorded mouse movement which is the
mouse (x, y) position. For keyboard input, we used the (z, y)
position of the cursor, which refers to the blinking mark
placed in the text area to indicate a proposed position for in-
sertion. In the recording, the cursor was only visible when
the current, focused UI component is a text input area. We ex-
tracted the position and timestamps of mouse and cursor per
user, per task. Since eye fixations occurred every 200-500 ms
and the positions of the mouse and cursor were logged when-
ever they changed, we sampled time uniformly every 10ms
and interpolated the positions by assigning the previous eye
fixation and most recent mouse and cursor position to each
timestamp. We computed the Pearson product-moment corre-
lation coefficient, which measures the linear dependence be-
tween two variables giving a value between +1 and —1 inclu-
sive, where 1 is total positive correlation, 0 is no correlation,
and —1 is total negative correlation. We also estimated the
lag of a signal compared with the fixation by finding the peak
of the cross-correlation of the two time sequences.

Table 1 shows that eye and mouse correlate in both directions.
Additionally, the mouse tends to lag behind gaze by more than
100 ms on average. Both results support the finding of AAUC-
pattern 1. Besides, the strong correlation in the x direction
for eye-cursor indicates that when the participant was editing
text, the focus of attention mainly landed right on the next po-
sition for adding new content, which supports AAUC-pattern
2. Furthermore, since the active time for the mouse and cur-
sor is non-overlapping, by combining the mouse and cursor,
we got a higher correlation between attention and user input
in both the x and y directions.

Attention-action correlation in pixel space

Signal x lag x (ms) y lag y (ms)
Mouse 0.35 114 0.51 193
Cursor 0.44 2 0.36 9

Combined 0.60 - 0.56 -

Table 1: Correlation and lag in the x and y direction between
eye movement and user input including the mouse trajectory,
the cursor position, and the combination of both.
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Figure 7: Statistically there exist some typical work flows
for users to complete a text editing task even across different
applications. At each time, the fraction of dwell for one Ul
group is computed by calculating the portion of tasks in the
dataset with that group of Ul as the focused UI group.

Interaction Flow Patterns

To understand visual attention, temporal evolution of atten-
tion allocation is also an important factor. When interacting
with a GUI, visual attention can be strongly influenced by the
semantic meaning of the interface components. Having a task
in mind, the user performed a sequence of basic computing
tasks (such as selecting a piece of text and editing the format
of selected text) to achieve the goal. Although different users
may choose different methods to accomplish each basic com-
puting task (such as menu item selection or pressing a key
combination when changing the format of a word to bold), if
there exists a typical workflow for users to complete a task at
a higher level, then it can serve as a useful cue that we can
rely on to predict the current interface component of interest
and the corresponding attention allocation.

To answer this question, we evaluated the distribution of the
focused UI group over time. At each time point, the focused
UI group was determined by mouse selection. As seen in Fig-
ure 7, at the beginning of the task, participants tended to start
on the general description of the task, for instance the title of
the blog or the subject of the email. They then spent most
of their time working on the main content while simultane-
ously changing the format of the text. Before finishing the
task, they edited the meta information, for instance, choosing
a privacy setting for the post. Generally speaking, the distribu-
tion of the focused UI group at each time point also suggests
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Figure 6: Sample spatio-temporal interaction patterns. (a) Bounding boxes of UI components and tracks of eye, mouse, and
cursor position. (b) The same positions over time. Also shown are three frequently occurring patterns: 1) mouse follows the eye,
2) eye focuses on cursor during text editing, and 3) the mouse remains stationary while the eye inspects text or Ul components.

the probability distribution of visual attention focusing across
UI groups. Furthermore, from the perspective of top-down at-
tention prediction, the fact that this distribution changes over
time implies that to accurately predict “what” is attended to
visually by the user, a model should (automatically) capture
the temporal evolution of the focused UI group as well.

SPATIO-TEMPORAL MODELING OF VISUAL ATTENTION
Figure 8 shows an overview of our approach for modeling
users’ visual attention on a GUIL. Our model takes informa-
tion about the interface as well as users’ mouse and keyboard
actions as input, computes individual feature channels from
the raw data recorded over time, and predicts joint spatio-
temporal attention maps, which indicates the likelihood of
users’ attention focusing on each location over time.

In a general form, estimating the attention map is a regres-
sion problem. For each pixel location of the target Ul space,
we compute a feature vector m based on the feature chan-
nels extracted from the raw data. Then we seek a function
mapping from m to v which is the pixel value of the ground-
truth attention map corresponding to the same location. In
our case, ground-truth attention maps of training data are ob-
tained using an eye tracker. We use a generalized linear model
parametrized by a weight vector w to represent this mapping;
the predicted attention value at each pixel is indicated by the
weighted sum of the pixel value at the corresponding location
from the observed maps. Mathematically, the goal is to opti-
mize the following objective function:

argminZZZH Z wimi — |3 + Al|wl|3

u T P i=k: K

where K is the number of feature channels, U indicates the
set of users, 7" indicates the set of tasks performed by a user,
P is the number of pixel samples used for training and \ is a
regularization parameter to prevent overfitting. This is a stan-
dard optimization problem which has a closed-form solution.

In this work we consider two cases, static and dynamic at-
tention prediction, depending on whether the temporal aspect
is taken into account. For dynamic attention prediction we
further discuss two cases, offline and online, depending on
whether the testing is conducted during or after the recording.

Features

As discussed in the previous section, three AAUC patterns are
frequently observed, and they illustrate close correlation with
eye movement for the mouse, keyboard, and interface com-
ponents, respectively. To combine these three factors (mouse,
keyboard, and interface) into the feature for training a predic-
tive model, we use the following information from the raw
data: mouse and cursor positions and Ul element locations.

For the mouse and cursor positions, we create a binary map
with those pixels set to 1 that have a mouse/cursor dwell and
0 for the others, given a set of (z,y) positions which corre-
spond to a set of time points. Which set of time points to use
depends on the training/testing setting, and will be discussed
in a later section. For the bounding boxes of UI groups, we
create a binary map for each of them based on the location of
the bounding box (1 for pixels inside the box, O for others).
Then we convolved these binary maps with a Gaussian filter
(with a cut off frequency —6d B) in the same fashion as com-
puting the attention map from fixations, as shown in Figure 8.
This yields one mouse map, one cursor map, and G UI maps
as features.

Since the fixation locations are very sparse compared to the
total number of pixels, the numbers of fixated pixels and non-
fixated ones are very unbalanced. To address this issue we
adopt a similar strategy as Judd et al. [30] during training:
for each attention map, we first keep all pixels with a value
above a threshold, then randomly sample the same number of
pixels from the rest. We set the threshold as a fixed fraction
of the maximum value in the attention map. We only use
the sampled pixels for training the model. During testing, we
compute the feature vector for each pixel location and predict
its value within the attention map.
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Figure 8: Our model for visual attention prediction in graphical user interfaces takes information about the interface as well as
users’ mouse and keyboard actions as input. The model then computes individual feature channels from the raw data recorded
over time and predicts joint spatio-temporal attention maps. For evaluation purposes, we compare these predicted attention maps
with ground truth attention information recorded using an eye tracker.

Static Attention Prediction

We first address the problem of predicting a static attention
map which indicates the spatial distribution of the attention
of one user using one interface performing one task. This
case assumes an offline analysis, and the goal is to predict
the whole attention distribution over the GUI space given a
recording of user activities on one UI and one task.

The procedure is similar to previous bottom-up models deal-
ing with static images, where the fixations with positions
(z,y) of one user performing one task are accumulated
over time and the corresponding attention map is used as
the ground truth for training as shown in Figure 9. For
mouse/cursor, we first accumulated the set of (z, y) positions
into a binary map, and then applied Gaussian convolution. In
order to train a generalized model for tasks with a different set
of UI groups, if a certain UI group doesn’t appear we set its
UI map to all zero values; otherwise, we compute a Ul map
based on the location and size of its bounding box.

Dynamic Attention Prediction

While the static model is expected to capture spatial attention
distribution efficiently, it is often more important to predict
time-dependent localization of visual attention. As discussed
previously, the attention allocation to each UI group changes
over time (see Figure 7). The dynamic attention prediction
model emphasizes this temporal aspect of users’ attention and
aims to predict the spatial location of attention over time in-
stead of predicting one global distribution. In this section, we
consider both offline and online analysis scenarios.

Offline Model

We first normalize the time span of each task to [0, 1], then
evenly sample 7" time points and train a model M (¢) for each
time point ¢. In this case, there is only one fixation used as

the ground truth at time ¢ as shown in Figure 11. The posi-
tions of fixation, mouse, and cursor at ¢ are defined as the last
observed previous position. For each time ¢ we extract fea-
tures from a time window [t — d, ¢ + d] around ¢. Unlike the
static case, these maps are not aggregated but used as a set of
2d + 1 maps. Another important aspect of the offline analysis
is that we can also know the normalized timestamp ¢ of the
test data. Therefore the attention prediction at each time ¢ is
directly computed by M(t).

Online Model

For interactive tasks, it is also important to assume an online
analysis scenario. In contrast to the offline model, in this case,
the total duration of the current task is unknown. Hence it is
required to first predict the normalized time ¢ from the user’s
previous activities. To this end, we additionally train a nor-
malized time prediction model during the training. We first
compute the histogram of the fraction of dwell time on each
UI group as in Figure 7 for [0, t], and train a linear regression
model to map this histogram to the normalized time t. Dur-
ing testing, we first estimate the normalized time ¢ and then
choose the corresponding M (t) for prediction.

RESULTS

Our model was trained on half of the users and tested on the
other half. For dynamic attention prediction we evenly sam-
pled 200 time points in the range [0, 1]. For the offline model
we set d = 10 data points. The threshold that we used for
sampling the training data was 0.1 times the maximum value
of the fixation map.

Metrics

To evaluate the accuracy of our proposed models, we used
the following metrics commonly used in the visual saliency
literature:



Static attention prediction accuracy

Dynamic attention prediction accuracy

Method NSS AUC-Judd AUC-Borji CC  Similarity Method NSS AUC-Judd AUC-Borji CC  Similarity
GT 3.99 0.97 0.96 1.00 1.00 Gaussian  0.86 0.78 0.77 0.13 0.10
Gaussian  0.61 0.76 0.75 020 027 Mouse  4.54  0.86 0.77 047 042
GBVS[22] 2.07 0.91 0.86 0.27 0.18
Mouse  3.19 0.95 0.86 0.80 0.66
GBVS [22] 2.62 0.89 0.82 0.63 0.49 SALICON [28] 2.97 0.94 0.84 0.35 0.27
SALICON [28] 292 0.93 077 074 0.53 CovSal [18] 2.44 0.92 0.79 0.29 0.23
Ours (offline)  6.26 0.98 0.97 0.65 0.26
CovSal [18]  2.89 0.54 0.82 0.69 0.52 P i 553 0.98 0.97 0.29 034
Ours 3.43 0.96 0.89 0.86 0.73 urs (online) 5. . . - -

Table 2: Performance comparison for static attention predic-
tion as well as the ground-truth (GT) performance.

e Normalized Scan-Path Saliency (NSS) [40]. This measure
is calculated as the mean value of the normalized attention
n s(xiyi)is

map s at n fixation locations: NS'S' = %L i—1 e

e Area Under ROC curve (AUC). The attention map is treated
as a binary classifier; the pixels with a value above a thresh-
old are classified as fixated, while the rest are classified as
non-fixated pixels. By thresholding over this map and plot-
ting the true positive rate versus false positive rate curve
(ROC curve), AUC is calculated as the area underneath the
curve. Different variations of the AUC metric exist; we
used AUC-Judd [30] and AUC-Borji [6].

e Correlation Coefficient (CC). This measure is the linear
correlation coefficient between human attention map h and
a predicted attention map s (CC=0 for uncorrelated maps):

CC(S, h) _ cov(s,h)'

OsOh

e Similarity. This measures the similarity between two differ-
ent attention maps when viewed as distributions (SIM=1
means the distributions are identical). The maps are
first normalized to sum to 1, then Similarity(s,h) =

Zi min(si, hz)

In order to obtain a ground truth attention distribution, we
convolve a Gaussian filter across the users’ fixation loca-
tions [30].

Static Attention Prediction

We compared our model with three state-of-the-art attention
models: graph-based visual saliency (GBVS) [22], Saliency
in Context (SALICON) [28], and attention from region covari-
ances (CovSal) [18]. We also employed a naive baseline that
always predicts a central Gaussian, and we included human
performance by directly using the location of fixations. Ta-
ble 2 summarizes prediction scores of these models. As can
be seen from the table, our model performs best across all
employed metrics. In particular, the model achieves a NSS
of 3.43 (human: 3.99), an AUC-Judd of 0.96 (ground truth:
0.97), and an AUC-Borji of 0.89 (ground truth: 0.96). While
the CC (0.86) and Similarity (0.73) metrics are slightly worse
(ground truth: 1.00), our model still outperforms all other
models by a considerable margin. The next best attention pre-
dictions are achieved using only mouse information, which
is competitive with our model particularly for the AUC-Judd
(0.95) and AUC-Borji (0.86) metrics. As expected, the naive
baseline performs the worst among all models. These results

Table 3: Performance comparison for dynamic attention pre-
diction.

underline the importance of combining information capturing
users’ actions as well as UI components for static attention
prediction. We speculate that for user interfaces with more
complex appearances, such as an image editor or a news feed
on a social network, the predictive power of traditional atten-
tion models can be leveraged to improve performance even
further.

Figure 9 shows sample attention maps for static attention pre-
diction using our model, individual user inputs, and estab-
lished bottom-up attention models for the email writing task.
Note that, as per definition, the maps for fixation, mouse,
and cursor are computed by accumulating samples over the
whole task. As can be seen in the figure, the attention map
predicted by our model matches well with the ground-truth
gaze data obtained from the eye tracker. In contrast, infor-
mation on mouse and keyboard input alone is not sufficient
to model the complex spatio-temporal attention patterns that
emerge during the email writing task. While mouse informa-
tion correctly predicts a high-attention area at the bottom of
the screen, it misses the high-attention area at the top left (and
vice versa when using only keyboard information). The fig-
ure also shows that established bottom-up attention models
lag even further behind. While the high-attention areas pre-
dicted by GBVS mainly align with high-contrast regions of
the user interface, SALICON and CovSal only predict a cen-
tral uninformative region.

Dynamic Attention Prediction

The output for dynamic attention prediction is a sequence of
fixation (z,y) positions over time, as shown in Figure 10.
Since there is only one fixation for each point in time during
testing, for evaluation purposes, we chose two scores (NSS
and Auc-Judd). Both scores directly use fixation positions
(instead of attention maps, as ground truth) to evaluate the
accuracy of proposed models.

As shown in Table 3, our model performs best across both
metrics for both the offline and online case. For known users,
the best performance is achieved by our offline (NSS 6.26,
AUC 0.97) and online models (NSS 5.53, AUC 0.98). They
are followed, at a considerable distance, by the mouse (NSS
4.54, AUC 0.77) as well as the bottom-up models and the
naive baseline. Similar performance behavior can be seen for
the case of new users. These results show that in the case of
dynamic attention prediction, there is a large performance gap
between pure bottom-up models and models that take users’
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Figure 9: Sample attention maps for the email writing task for static attention prediction using the different models: spatio-
temporal visual attention model (Ours), mouse or keyboard input, graph-based visual saliency (GBVS), Saliency in Context
(SALICON), attention from region covariances (CovSal). Ground-truth attention map was obtained using an eye tracker.
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Figure 10: The predicted (x,y) fixation position over time
for dynamic attention prediction using different models. The
time is normalized to [0, 1].

actions into consideration. In an interactive setting, the fixa-
tion location of the current point in time greatly depends on
users’ previous activities and current mental state, so the vi-
sual information plays a less important role in this case.

In Figure 6 we mentioned that three patterns of AAUC are
often observed. A prediction model should have the capac-
ity to capture these patterns. As illustrated in Figure 11, our
model successfully achieves this goal by designing the fea-
tures based on previous observations, which also explains the
performance gap between our models and other methods.

Furthermore, we found that our regression methods for pre-
dicting the normalized time point for online testing provided

reasonable results with time prediction error 0.19 (¢=0.15).
This, again, confirms the observation that there exist typical
workflows that can be generalized, although the task, the UlI,
and the users vary across each recording. Among different set-
tings of our models, the offline model performs better than the
online model by adding information from further time-stamps
in the feature.

DISCUSSION

In this work we presented a computational model for predict-
ing users’ spatio-temporal visual attention for graphical user
interfaces. The key advantage of our model is that it does
not require any eye tracking equipment. Instead, it predicts
attention solely using information available to the interface,
specifically users’ mouse and keyboard input as well as the
UI components they interact with. By taking text-editing
as a use case and through extensive evaluations, we demon-
strated that our model outperforms state-of-the-art methods
by a large margin. We showed that visual attention prediction
in an interactive environment can be dramatically improved
by taking both information about the interface as well as users’
mouse and keyboard actions into account.

To evaluate our model, we introduced a method to group user
interface components according to their functionality and to
synthesize new user interface layouts derived from real-world
interfaces. This method proved very useful, as it enabled us
to reduce the influence of other factors on visual attention. In
addition, by focusing on the functionality of UI components,
we were able to study different application scenarios jointly
and develop a generic model applicable to all scenarios. The
method has considerable potential beyond the current study,
because it can be easily scaled up to a much larger number of
interfaces and users. It can also be easily extended to other
tasks beyond text editing, and we therefore believe it can be
developed into a general tool for studying UI design varia-
tions in a principled manner.
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Figure 11: Sample screenshots of text editing tasks and corre-
sponding maps for next fixation prediction by different mod-
els. The blue cross indicates the human fixation, and the red
circle and the yellow square are the first and second maximum
point of each map after non-maximum suppression, respec-
tively. By incorporating mouse and cursor input, our model
provided correct prediction when AAUC pattern 1 (a) and
AAUC pattern 2 (b) occurred. By taking the information of
interface into account as well, our model even predicted accu-
rately by a second guess when AAUC pattern 3 (c) occurred.

We recorded a dataset that contains synchronized mouse and
keyboard as well as gaze data on synthesized Ul layouts. By
analyzing the data, we were able to identify common pat-
terns of interaction across visual attention, physical action,
and user interface components. We also found that differ-
ent users share consistent attentive behavior when perform-
ing similar tasks. Taken together, these findings show that
computational modeling of spatio-temporal visual attention
has significant potential to answer fundamental questions in

attentive user interface design, such as how users allocate vi-
sual attention over different GUI components and how physi-
cal input, visual attention, and task interplay with each other.
Spatio-temporal modeling of users’ visual attention therefore
also has potential for more general application scenarios, such
as user interface evaluation, optimization, or simulation.

While the results from our evaluations are promising, we iden-
tified several opportunities for extending and improving our
model. For example, future work could evaluate the proposed
modeling approach for other types of user interfaces, inter-
action tasks, or platforms, such as public displays or hand-
held personal devices. Since visual attention, available in-
put modalities, and coordination with other inputs will differ
across these different platforms, these evaluations will pro-
vide valuable insights into the generality of the approach. In
addition, while in this work we focused on mouse and key-
board input only, it will be very interesting to see whether and
how other inputs can be incorporated into the model, such as
gesture, speech, or touch input.

CONCLUSION

In this paper, we presented a computational model to predict
users’ spatio-temporal visual attention on graphical user inter-
faces. In order to systematically control and study the influ-
ence of different sources of information on visual attention,
we also introduced a method to utilize synthesized user in-
terface layouts. We then conducted data collection studies
and demonstrated the effectiveness of the proposed model by
comparing our model with state-of-the-art methods. We be-
lieve that our work provides valuable tools for understanding
users’ behavior in interactive environments.
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