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ABSTRACT
Particularly in sports or physical rehabilitation, users have to
perform body movements in a specific manner for the exer-
cises to be most effective. It remains a challenge for experts
to specify how to perform such movements so that an auto-
mated system can analyse further performances of it. In a
user study with 10 participants we show that experts’ explicit
estimates do not correspond to their performances. To ad-
dress this issue we present MotionMA, a system that: (1) au-
tomatically extracts a model of movements demonstrated by
one user, e.g. a trainer, (2) assesses the performance of other
users repeating this movement in real time, and (3) provides
real-time feedback on how to improve their performance. We
evaluated the system in a second study in which 10 other par-
ticipants used the system to demonstrate arbitrary movements.
Our results demonstrate that MotionMA is able to extract an
accurate movement model to spot mistakes and variations in
movement execution.
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INTRODUCTION
Physical exercises, such as in sports or physiotherapy, require
a specific execution to result in the desired training effect.
Hence, experts such as personal trainers and physiotherapists
need to communicate this knowledge to novices so that they
can perform these movements properly. From informal obser-
vations and interviews with trainers we found that the com-
munication between experts and novices can usually be de-
scribed by a 3-step communication loop (see Figure 1): The
expert first demonstrates how the movement should be per-
formed and gives hints on what the novice should focus on.
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Figure 1: Bidirectional communication loop between expert
and novice: The expert demonstrates a movement, which is
repeated by the novice and improved according to the expert’s
feedback.

The novice then repeats the movement under the expert’s su-
pervision. Finally, the expert provides feedback on the quality
of the execution and how it can be improved.

This communication loop works well if the novice is under
direct supervision by the trainer, i.e. if both of them are co-
located, but it breaks if personal supervision it not possible,
e.g. at home. In these cases, novices so far have to rely on
video recordings or on written descriptions and images of the
exercises. While training using such descriptions is possible,
this approach does not allow for real-time feedback and pre-
vents novices to learn how close their execution is to the de-
sired one and how they can improve it. In addition, written de-
scriptions are typically high-level and qualitative and do not
allow novices to quantitatively analyse their performance.

We present MotionMA (Motion Modelling and Analysis), a
system to encode and communicate movement information
and thus enable real-time feedback between spatially sepa-
rated users. MotionMA allows expert users to specify move-
ments by demonstration. The system then automatically ex-
tracts a model of the movement and generates a feedback in-
terface that can be used by other users to repeat the move-
ment and receive feedback on their performance. MotionMA
comprises a method for extracting a quantitative model of a
movement, e.g. performed by an expert; a method that uses
the extracted model to evaluate a given execution, e.g. by a
novice; and an approach to automatically generate a feedback



interface from the model that helps novices to assess and im-
prove their performance in real time.

RELATED WORK

Remote Coaching
Remote collaboration has been extensively explored in the
field of Computer Supported Cooperative Work (CSCW).
Similarly, our system supports knowledge transfer between
experts and novices separated in space and time. Previous
work related to physical activities includes virtual reality sys-
tems that put the user and trainer side by side for tai chi learn-
ing and dancing [13]. There’s also been work on how to con-
vey gestures remotely using voice combined with a projec-
tion [12] and a head-mounted camera and a near field display
installed on users’ helmets [10]. Video recordings of trainers
performing exercises have been used extensively in several
different mediums, ranging from video tapes to online stream-
ing. More recently trainers are also able to recommend sets
of exercises remotely using a wide range of smart phone apps
and services like Fitocracy and Fitlink enable online collab-
oration among users and between users and trainers. These
systems, however, can only go as far as routine prescription,
without any means for users to assess their performances.

Motion Tracking and Analysis
In the sport sciences, a common method for analysing per-
formance of exercises is to film the athletes and annotate the
footage offline using a video digitisation system. An alter-
native is to use a motion tracking system to extract a skele-
ton of the athlete automatically. Such systems can be vision-
based, usually with passive markers (Vicon, OptiTrack) or
IMU (Inertial Measurement Unit)-based (XSens). More re-
cently, depth cameras such as the Microsoft Kinect and the
ASUS Xtion enabled consumer-level motion tracking appli-
cations, including fitness games that guide players and give
feedback on their performance, such as Nike+ Kinect Train-
ing, Your Shape: Fitness Evolved and EA Sports Active 2.
A drawback of these commercial systems is that their algo-
rithms are hidden from the user and their exercises are pre-
programmed, without the possibility to tailor the exercises to
the user’s needs. Technogym’s strength machines can be aug-
mented with the IsoControl hardware that provides feedback
on range of motion, speed and resting time as well as repeti-
tion counting. No similar product exists for free weight lifting
(i.e. using dumbbells and barbells).

Several research projects focused on using inertial measure-
ment units to track and automatically assess physical exer-
cises. For example, Chang et al. were able to tell weight
lifting exercises apart using accelerometers on users’ bodies
but did not analyse the quality of individual executions [3].
Moeller et al. used the sensors in a mobile phone to anal-
yse and provide feedback on exercises performed on a bal-
ance board [17]. The Kinect has also been used to improve
the quality of movements. Kinerehab analyses users’ perfor-
mances of physical rehabilitation movements and provides
feedback, but the exercises only included lifting both arms
to the front, to the side and upwards [4]. Martin et al. devel-
oped a system that sets out to perform a real-time ergonomic

Figure 2: System architecture. Experts specify movements
through the demonstration interface. The system extracts a
model of the movement and stores it in a repository. The
models can be visualised and edited in the tweaking interface.
Novice users can then perform the movement, which is then
compared with the model to provide feedback accordingly.

analysis of industrial workers carrying and lifting objects in
order to prevent musculoskeletal disorders [16]. Their sys-
tem was limited to analysing static positions rather than dy-
namic movements or gestures. Moreover, neither system al-
lows users to specify the movements by demonstration.

Programming by Demonstration
Programming by Demonstration (PbD) has been an active
area of research since the early 80’s [9]. Instead of hard-
cording a system’s behaviour, PbD aims to make it possible
to program systems by having a user demonstrate to them
how they should behave. Such systems aim at making their
programming easier for the end-user, who does not need to
learn a formal language to specify the system’s behaviour [5,
14]. Application areas include robotics [2], software for chil-
dren [6], text editing, gesture recognition [15], children’s
toys [19], and context-aware computing [7].

In this work, we use a PbD approach to model human move-
ment and assess its quality of execution. Researchers in
robotics extensively studied training of robots with human
demonstrating certain activities [11, 20]. Hence, while previ-
ous works focused on using PbD for reproduction, prediction
and recognition of movement, we use it to specify a model
and analyse further performances of the same movement.

THE MOTIONMA SYSTEM
MotionMA is a system to communicate movement informa-
tion in a way that people can convey a certain movement
to someone else who is then able to monitor his own perfor-
mance and receive feedback in an automated way (Figure 2).
It allows users to model movements and assesses further per-
formances of the same movement in comparison to the model.

In developing a system to support the communication of
movement information, we tried to emulate the process de-
scribed on Figure 1. This implies three main functionalities
that the system should make available: (1) Allow users to
specify movements; (2) Analyse performances of movements;
(3) Provide feedback on performances.



All three functionalities are tightly coupled to each other. The
feedback the system provides depends on the output of the
analysis, which, in turn, strongly depends on the movement’s
model. At the core of the system is the movement’s inter-
nal representation, i.e. its model. We wanted our model to
be simple enough to be suitable for real-time analysis, but
be able to convey enough detail to provide an accurate de-
scription of the movement. We also wanted it to be expres-
sive enough to model a wide variety of movements and to be
subject-independent, so that the same model can be used by
different users. Moreover, we wanted it to allow for analysis
approaches that provide relevant information, such as mistake
spotting and improvement guidelines.

The standard in Kinesiology is to define motion in terms of
the angles of each bones in relation to reference planes (sagit-
tal, frontal and horizontal), which makes it suitable for people
with different body measurements. In practice, however, we
don’t need all three angles, since the direction of a vector can
be fully specified in 3D space with only two. Therefore, for
each bone we define a spherical coordinate system with the
origin at one of the joints and the zenith direction as the ver-
tical at the global coordinate system. Our model is defined
as a set of timestamped characteristic points for each bone in
each rotation axis. A set of characteristic points is a minimum
collection of points with which you could generate a approx-
imation of the time series. Equation 1 shows the formal rep-
resentation of our model, where the models Mθ and Mϕ for
each one of the 19 bones b in a skeleton S are the sets of n
tuples (tθi , θi) and m tuples (tϕj , ϕj) ,with the timestamped
values of the polar θ and azimuthal ϕ angles.

∀b ∈ S

{
Mθ(b) = {(tθ1 , θ1), ..., (tθn , θn)}
Mϕ(b) = {(tϕ1

, ϕ1), ..., (tϕm
, ϕm)} (1)

We don’t use tuples with both angles at once, so n can be
different than m. This allows us to analyse the movement in
each axis independently, which makes it easier to provide im-
provement guidelines. For example, if a problem is detected
at the azimuthal axis, we can guide the user to rotate the cor-
responding bone up or down, whereas if the problem is at the
polar axis, the rotation would be in the left or right direction.

Using this model, we can compare two performances by com-
paring corresponding sets of points. First we need to compute
the distances between each point in one set to each point in
the other to match the points. By looking at each component
of the difference vector, we can then infer whether each char-
acteristic point was at the correct angle (y axis) at the correct
time (x axis). Moreover, depending on the direction of this
vector and the rotation axis, we can infer improvement guide-
lines. For example, if the difference between a point in a
given performance and the corresponding point in a baseline
performance for the azimuthal angle is positive in the x axis
and negative in the y axis, we can infer that the user got that
point too soon and at an angle too large. The magnitude of
each component will tell how far off was he from the specifi-
cation and whether an improvement guideline should be dis-
played. Also, we can tell genuine mistakes and normal vari-
ability by looking at the distribution of values in the demon-

stration and checking whether the value in the performance
differs significantly from the ones in the demonstration.

ABILITY OF EXPERTS TO DESCRIBE EXERCISES
We first conducted a user study to investigate whether and
if yes how well expert users are able to formalise a move-
ment description from their knowledge and experience, i.e.
to specify and estimate angles and speed of movements. For
this first study we opted to investigate weight lifting exercises
given that these exercises are well defined and structured but
at the same time allow for plenty of variability and can be
performed in the wrong way.

For this study, we chose three common weight lifting exer-
cises, all of which novices were able to perform and that ex-
perts were able to instruct others on how to perform. The
exercises were the Unilateral Dumbbell Biceps Curl, the Uni-
lateral Dumbbell Lateral Raise and the Unilateral Dumbbell
Triceps Overhead Extension. We recruited 10 male expert
weight lifters, aged between 22 and 45 years (mean = 31.0, std
= 8.38), heights ranging from 1.70 m to 1.89 m and weights
ranging from 63.0 kg to 90.8 kg. Participants were recruited
using posters distributed around the university campus and
on two gym clubs. We made sure that all participants had
at least three years of experience with weight lifting, ranging
from that up to 25 years.

The experiment took place in a quiet indoor laboratory setting.
Participants were asked to wear a belt, armband, gloves and
hold a dumbbell on each of which were mounted 5 Xsens in-
ertial measurement units as shown on Figure 3. These sensors
were connected by wires in a daisy chain fashion to an Xsens
XBus, which streamed the data over Bluetooth to a Linux lap-
top. Data recording and synchronisation was handled by the
Context Recognition Network Toolbox (CRNT)[1]. Partici-
pants were asked to stand approximately 2 meters in front of
a Kinect camera. A custom application streamed the skeleton
data to the CRNT, as well as the labels and the frame number
of the RGB camera. As ground truth we recorded videos us-
ing a camcorder mounted to the right side of the participants.

Upon arrival in the lab all participants were asked to sign
a consent form and to answer a brief questionnaire regard-
ing their previous experience with the specific exercises and
weight lifting in general. They were then presented with a
written description of the three exercises. Afterwards, they
were guided through a structured interview by the experi-
mental assistant, in which they were asked to provide the
angles for certain joints of the body for each step of each
exercise. Specifically, our goal was to obtain the values
of angles that they considered to be ideal for each move-
ment in their own understanding of how they these move-
ments should be performed when exercising or coaching as
defined in the written description. We were interested in
finding for each joint, whether there was movement during
the exercise, the initial and final angle, the acceptable toler-
ance and how long the movement should take. These are all
standard measures in Kinesiology [8]. Since we are focus-
ing on upper body movements, we inquired about arm flex-
ion/extension/hyperextension, arm abduction/adduction, arm
lateral/medial rotation, arm horizontal abduction/adduction,



Figure 3: Sensing setup. Blue circles indicate the joints
tracked by the Kinect and red rectangles indicate the position-
ing and orientation of the Xsens sensors.

elbow flexion/extension, wrist pronation/supination, wrist
flexion/extension and ulnar/radial deviation. To make it clear
to the interviewee what each movement meant, we provided
a graphical diagram of each movement along with the corre-
sponding angular axes. Also, participants were free to ask
questions if in doubt about the what each movement meant.

After equipping our sensing system participants were asked
to perform 10 repetitions of the Unilateral Dumbbell Bi-
ceps Curl, the Unilateral Dumbbell Lateral Raise, and the
Unilateral Dumbbell Triceps Extension using three different
weights (1.25kg, 3kg and 7kg), totalling 90 repetitions for
each participant. The data was manually annotated according
to the exercise, weight and participant for post-hoc analysis.

Results
We analysed the data by manually separating each repetition
according to the plots and the frames in the video recordings.
From each repetition, we extracted different information de-
pending on the exercise. For the Biceps Curl, we extracted
the maximum and minimum of the elbow flexion, the mean
of the arm flexion, the mean of the arm abduction, the mean
of the lateral rotation and the duration of each repetition. For
the Lateral Raise, we extracted the maximum and minimum
of the arm abduction, the mean of the arm flexion, the mean
of the lateral rotation, the mean of the horizontal abduction,
the mean of the elbow flexion and the duration of the repe-
tition. Finally, for the Triceps Extension, we extracted the
mean of the arm flexion, the mean of the arm abduction, the
mean of the lateral rotation, the mean of the horizontal abduc-
tion, the minimum and maximum of the elbow flexion and the
duration of the repetition. For each participant, we compared
the distribution of measurements for each of these values to
the answer given in the questionnaire with a One-Sample T-
Test. With very few exceptions, the angles suggested in the
interview were significantly different (p < 0.05) to the angles
in the actual performance. This means that participants’ esti-
mates of the angles don’t reflect their performance. Figure
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Figure 4: Average difference among all participants of each
angle against the value suggested by the corresponding par-
ticipant for that angle. The error bars represent standard de-
viations. For angles that are supposed to remain still we use
the mean and for those which are supposed to vary we use the
maximum and minimum.

4 shows the consolidated differences for all participants be-
tween each of the measured angles in the 30 performances of
the Biceps Curl and the estimate given by the corresponding
participant. Differences of the same order of magnitude were
found for the other exercises. Figure 5 shows the average dif-
ference for all angles in all movements for each participant.

In order to find out whether the performances matched among
different participants, we ran a One-Way ANOVA Test on
each dataset and again the results were significantly different
(p < 0.05), even though in a some cases the performance of a
few different trainers would match within the group, as seen
on a post-hoc Tukey analysis.

Discussion
The results point out that even for experienced weight lifters it
is difficult to give accurate estimate of the angles in their own
performance, even for movements that are simple and very
well defined. Indeed, it has been long known that humans
tend to overestimate acute angles and underestimate obtuse
ones [18]. This evidences that specifying a movement by nat-
ural language and estimating precise angles by observation is
difficult.

Moreover, even though they all knew the movements rather
well from previous experience and were provided with a writ-
ten description of their execution, performances varied signifi-
cantly among different participants. This does not mean, how-
ever, that some of them did the exercises incorrectly, only that
a wide variety of small possible variations in the performance
of a given movement, which is evidence for the ambiguities
of written descriptions of movements. Also, these variations
occur according to the goals of the weight lifter. For exam-
ple, while the standard description of a Biceps Curl might
state to start the movement with your arm fully extended and



Figure 5: Average difference for each participant between
the estimate and the measured angles among all angles. This
study shows that users’ estimates are in average 10.76 degrees
off the measured angle, making it hard to rely on these esti-
mates to evaluate performances.

to finish the movement with your arm fully flexed, a trainer
might ask you to flex your arm only halfway to exercise spe-
cific muscle fibres. This does not make the second execution
incorrect, only different to the first one, which indicates the
need to be able to encode these variations into descriptions in
a clear way.

If even experienced users have difficulty in explicitly speci-
fying movement angles, we can assume that results would be
even worse when considering a wider range of experience and
complexity of movement. Moreover, even if they accurately
provide this information, inputting these values into the sys-
tem would prove to be a tiresome and demanding task, which
reinforces the case for a more implicit way to obtain this in-
formation. Inspired by the observation of how sports trainers
and physical rehabilitation professionals communicate move-
ment in real-world scenarios, we developed an approach to
extract the movement model by having the user demonstrate
it.

MOVEMENT MODELLING BY DEMONSTRATION
Our approach to specifying the movement model draws in-
spiration from Programming by Demonstration (PbD) works.
Our system allows the movement to be specified by allowing
the user to demonstrate it, analogous to how professionals
do in reality. While this minimises users’ effort in inputting
information, it arises new challenges, such as detecting the
beginning and end of the activity, detecting the characteristic
points of the movement and accounting for variations in the
movement.

A problem shared by many PbD and Activity Recognition sys-
tems is defining the limits of the actual activity being demon-
strated, i.e. detecting when it begins and when it ends. In
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Figure 6: Model extraction from demonstration performance.
The raw data (a) is filtered and by counting repetitions, the
data is segmented (b). We then find the characteristic points
for each repetition (c), merge them (d) and look for the cen-
troids of the data clusters (e).

order to solve this problem, we take as input for our model
extraction algorithm a dataset with the performance of 10 rep-
etitions of the movement. Once we can detect each repetition,
we can trim the demonstration data at either end.

Detecting the repetitions, however, is not a trivial task. Chang
et al. counted repetitions of free-weights exercises by apply-
ing a strong low-pass filter and extracted features to train a
Hidden Markov Model for individual exercises [3]. Because
at demonstration time there is no previous data to be used for
training, a machine learning approach is unsuitable for our
goal. Instead, we ask the user to perform 10 repetitions of the
movement and assume that we will find 10 cycles of a pattern
in the data. Because during the movement some bones might
be static while others move, we need to pick one axis of a
bone to count the repetitions in all of them. We choose the
bone and axis by counting peaks and valleys in every axis of
every bone and looking for a dataset that gives us 10 repeti-
tions with the largest amplitude of angles. The peak counting
algorithm uses a strong low pass filter combined with an au-
tocorrelation algorithm that looks for zero-derivatives on the
data, with the mean of values as a threshold to eliminate noise
and small variations. Once we have the repetition separation,
we automatically have the duration of the movement, which
we use in the analysis algorithm to analyse speed.

In order to find the characteristic points of the movement, our
algorithm analyses each repetition separately. We do this by
using a weaker low pass filter in every dataset and by looking



Figure 7: Demonstration interface. The user can see his
skeleton overlaid on top of the colour image recorded by the
Kinect. The recording is controlled by voice commands.

at zero-derivatives in the data. This gives us peaks, valleys
and inflexion points, which works well to provide a general
shape of the curve. At the end of this step, we have 10 sets of
points that describe the same movement. We merge these sets
to get a consolidated model. We accomplish this by looking
for the centroids in the merged data using a k-means clus-
tering algorithm. By using a consolidated model, we account
for variations in individual repetitions of the movement. With
this set of points at hand, we can make the distinction between
static and dynamic axes and tag them accordingly. This infor-
mation will be used in the analysis to analyse each dataset
appropriately. Figure 6 shows the complete process for an
example dataset.

The demonstration user interface is shown in Figure 7. The
main application was programmed in C# and receives the data
from the Kinect sensor directly through its SDK (version 1.5).
From the main menu, the user selects ’Demonstrate’ and is
presented with the demonstration interface. Here he can see
his own image in a virtual mirror overlaid with the skeleton
tracked by the Kinect sensor. The user then stands in the start-
ing position and issues a voice command to start the record-
ing. He proceeds to perform 10 repetitions of the movement
as consistently as possible. When he is finished he issues an-
other voice command to stop the recording. The system then
uses the extraction algorithm described in the previous sec-
tion to generate a motion model. The user can then save or
discard the generated model. The demonstration modelling is
done in Matlab, using a COM automation interface to transfer
data between the two applications.

In order to correct eventual mistakes in the extracted model
and to improve its overall accuracy, the user can choose to
tweak the model. The ’Tweak’ interface is shown in Figure
8. The system displays a skeleton figure on which the user
can select the bone he wishes to visualise. When a bone is
selected, the system displays the plots of the model for each
axis of the bone as well as whether each axis is dynamic or
static. In this step, the user also selects which bones he would
like to see in the feedback interface. This allows users to
tailor the system to specific goals, such as balance or range of
motion. He can then save or discard the changes.

Figure 8: Tweaking interface. In this step, the user can visu-
alise the extracted model for each bone and select what is to
be monitored in the performance interface.

In the example of the biceps curl, a user could use this step
to make sure the model for both arms are the same as well as
adjusting the range of motion in the y-axis. Also, he could
make sure that the duration of the flexion and extension dur-
ing the movement are correct by adjusting the position of the
characteristic points in the x-axis.

MODEL ANALYSIS AND FEEDBACK
Once a motion model is extracted from a demonstration, we
can use it to analyse further performances of this movement.
Since the relevancy of the feedback is tightly coupled to the
analysis outputs, we analyse each performance in different
levels to allow for different kinds of feedback. Even though
further research is necessary into how to actually provide this
feedback, we tried to make our analysis approach as compre-
hensive as possible.

The input for our analysis algorithm is the same as in the
demonstration, i.e. the spherical coordinates of each bone in
the skeleton as well as the model extracted at the demonstra-
tion step. We analyse the data at three separate points in time,
giving feedback accordingly: continuously, at the end of a
repetition and at the end of a set of repetitions. Continuous
feedback is given for rotation axes that are supposed to remain
static. This means that the angles at these axes should remain
still around a predetermined value, so they are monitored con-
tinuously looking for deviations that are flagged as soon as
they are found. Dynamic axes are monitored at the end of
each repetition. These datasets require the complete analysis,
which is described in the introduction. The system buffers
the values from the skeleton and runs the analysis when it de-
tects the completion of an instance of the movement. After
the user completes all repetitions, the system can analyse the
dataset as a whole and provide a more detailed evaluation of
the performance due to the reduced attention overload. In this
work, we focus on the real-time feedback, i.e. the continuous
analysis for static axes and the repetition analysis for dynamic
bones.

The architecture of the analysis is comprised of the elements
shown in Figure 9. The raw data from the tracking sys-
tem is converted into spherical coordinates and depending on
whether the dataset is static or dynamic it is analysed by a
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Figure 9: Analysis architecture. Data from the tracking sys-
tem is converted to spherical coordinates, analysed by the ap-
propriate component and the final analysis is displayed on the
interface.

Pose Analyser or a Movement Analyser, respectively. The
Movement Analyser is triggered by the Repetition Extractor.
The analysis outputs are then showed in the feedback inter-
face.

Much more work is needed to investigate what and when to
display to the user. In this first attempt to answer this ques-
tion we tried out different approaches to communicate move-
ment: video recording of the demonstration; moving dials to
monitor the adequate range of motion; traffic lights to moni-
tor static axes and to indicate how to correct them; coloured
skeleton, that changes the colour of each bone from green to
red depending on its score; speed warning lights, that tells the
user to speed up or slow down accordingly; repetition counter,
that shows how many instances of the movement have been
performed.

Figure 10 shows the user interface for the feedback system
we implemented. The systems loads the model, as well as the
interface elements selected by the user in the ’Tweak’ step. If
this step was skipped, the system selects the information to
be displayed automatically, based on the variation detected in
the model. The user stands in the starting position and issues
a voice command to start the analysis. Even though further re-
search into how to convey movement information in a mean-
ingful way is necessary, we took the first steps in that direc-
tion by trying out different approaches. Information regard-
ing static axes can be visualised in traffic lights that indicate
whether the pose is correct and how to correct it. Dynamic
axes can be visualised in dials that move together with the
performance. The system also displays warnings when the
performance is too fast or too slow and displays the repetition
count. Also, the system displays the video feed as recorded
in the demonstration session and the skeleton of the user as
currently tracked. Each bone in this skeleton is coloured dif-
ferently according to its score.

SYSTEM EVALUATION
With a working prototype that implements our approach at
hand, we could evaluate it in a user study. The goals of this

Figure 10: Performance interface. Information regarding
static bones is displayed on traffic lights whilst the ranges
of motion of dynamic bones are displayed on dials. The user
can see the video recording of the demonstration and his own
skeleton as tracked by the Kinect with each bone in a differ-
ent colour depending on its score. The interface also displays
the repetition count and warnings when the speed is too fast
or too slow.

study were to evaluate the modelling and analysis. For this
purposes, we recruited 10 participants aged between 24 and
41, of which one was female. They had different levels of
experience with weight lifting ranging from none to experi-
enced. This was to ensure that the modelling system was ro-
bust enough to handle different consistencies of performance.
The study was carried out in two steps, each one of which was
designed to evaluate each of our goals. This section describes
our experimental procedure and results.

The study took place in a quiet laboratory setting and each
session was carried out with a single participant. The experi-
mental setup consisted of a 27” display with a Kinect sensor
mounted on a tripod behind it. When using the system, partic-
ipants would stand on a previously marked cross on the floor,
approximately 2m away from the display and sensor. The sys-
tem uses the Kinect as a recording device, so no experience
with gestural interfaces was needed.

Experimental Procedure
We first evaluated the expressiveness and accuracy of our
modelling approach. Each user was asked to think of a con-
trolled and repeatable movement which they would model
using our system. Before performing the actual movement,
they were asked to provide a detailed written description of
it, give it a name and describe five possible mistakes or varia-
tions that a person trying to learn the movement would most
likely make. They were also asked which bones could be
used to count the repetitions of this movement. Then, each
participant recorded their movement using the demonstration
interface.

We then displayed the extracted model in the “Tweak” inter-
face and went through the model for each axis of each bone
together with the participant in a structured interview fashion.
We selected each bone, and the corresponding plots of each
angle would appear on the screen, as well as the values for



each step of the model. The user would then fill in a quali-
tative questionnaire where he would rank the accuracy of the
model for each axis of each bone as well as whether the sys-
tem marked the bone as static or dynamic correctly. They
were also asked to rank the axis and bone that the model ex-
traction algorithm used in order to count repetitions.

When evaluating the analysis, we wanted to find out (1)
whether the system could recognise a good performance and
(2) whether the system could spot the mistakes foreseen by
the participants. We asked them to perform 10 repetitions
of the movement as closely as possible to the demonstration
performance and to keep an eye on every element in the feed-
back interface. After this performance, they filled in a ques-
tionnaire regarding how accurate the system was at counting
repetitions, displaying the correct range of motion in the di-
als, showing a green light for static bones and indicating the
correct speed. Then, users were asked to do 10 repetitions
of each mistake and look for elements of the interface that
would spot these variations. After each performance, users
were asked to fill in a questionnaire regarding how accurately
did the system spot each one of them. Finally, each partic-
ipant filled in a general questionnaire regarding the overall
accuracy of the model, the detection of correct and incorrect
instances of the movement and the repetition counting. They
were also prompted to point out positive and negative aspects
of the system.

Results
Participants chose movements of a wide variety, from com-
mon strength exercises (Dead Lift, Lateral Raise, Biceps
Curl) to some amusingly named body gestures (The Lawn-
mower, Robot Elevator, Circulation Agent). These included
both upper and lower body movements and could all be con-
sidered controlled and repeatable.

When inquired about the accuracy of the model for each axis
of each bone on a 5 point Likert scale, users rated it were very
high (median = 5, mean = 4.7785, std = 0.7181) as shown on
Figure 14.

Users were also asked to rate how well the system spotted
each of the 5 mistakes they came up with. Figure 11 shows
users’ ratings of the mistake detection accuracy for all mis-
takes. Figure 12 shows users’ responses regarding how ac-
curate the system was in counting repetitions, in displaying
the correct range of motion, in displaying the correct posture
in the traffic lights and in displaying the correct speed in the
speed signs.

In the end, users gave their overall impressions of the sys-
tem. Figure 13 shows the answers to regarding how much
they agree that: (1) the system was able to extract an accurate
model of the demonstrated movement; (2) the system was
able to detect a correct performance of the movement; (3)
the system was able to count repetitions accurately; (4) the
system was able to detect mistakes in the movement. Most
responses were positive, with the exception of the one where
due to the poor choice of the repetition counting dataset, the
analysis did not work as expected.

Comments ranged from being very positive, recommending

Figure 11: Each user was asked to rate the accuracy of the
mistake detection for each of the 5 mistakes they came up
with. This chart show that our system accurately detected
around 70% of mistakes.

Figure 12: Users’ responses regarding how accurately each
interface element would indicate a correct execution when
performing the movement in the same way as in the demon-
stration.

deployment in real world situations (”Very impressed with
the ability to analyse body and and movement repetitions. I
would like to see this implemented in gyms”) to negative in
the case where the system did not work as expected (”Count-
ing repetitions was inaccurate. Feedback was confusing.”).
Some participants complained about the amount of informa-
tion on the screen (”Too many things going on to look at!”),
the limitations of the tracking system (”It cannot track hand
opening/closing.”) and limitations in the algorithm (”It didn’t
pick up when I was going in the wrong direction”). Most re-
sponses, however, complimented the interface (”I really like
the interface!”), the gamification of the movement communi-
cation (”It looks like a cool game!”) and how the feedback
could be used to correct mistakes (”Feedback was easy to use
as basis for correcting movement”).

Discussion
In general, participants were very positive about both the mod-
elling and the analysis, as the high scores show. While this
does not prove that the extracted model is entirely accurate, it
does reflect that the extracted model makes sense in terms of



Figure 13: Users’ responses regarding their perception of the
system.

Figure 14: Users’ responses regarding the accuracy of the
model. Each column represents each of the 38 axes of bone
movement (2 for each of the 19 bones).

ranges and general rotation of the bones to the users.

Even though users seemed to agree with the extracted model,
factors such as the difficulty in interpreting plots and the pre-
viously mentioned difficulty in estimating angles make it nec-
essary for us to obtain more evidence of its accuracy. Among
the interface elements, the speed meter was the one that per-
formed the worst. We posit that this happened due to the
nature of the movement analysis. The speed is measured af-
ter a repetition of the movement is completed, by comparing
how long the user took to complete it with the duration of
the repetition in the model. Because the displayed speed al-
ways regards the previous repetition, we noticed that users
would speed up or slow down accordingly but with no ef-
fect in the warning signs (which would only change after the
repetition was completed), which generated some frustration.
With the exception of one movement our repetition counting
algorithm counted all 10 repetitions very accurately. The one
case where it failed was due to a poor choice of the repe-
tition counting dataset, which by consequence, produced a
poor model overall.

Our results indicate that the system is able to extract an ac-
curate model of controlled and repeatable movements and

to generate automatically a feedback interface that provides
feedback on the execution of the movement. The data in
the user study also demonstrated some limitations in our ap-
proach. Whilst the analysis algorithm picked most mistakes,
there is still plenty of room for improvement. The negative
cases were due to the user not being able to recognise the sys-
tem’s feedback, limitations in the tracking system (for exam-
ple, the Kinect can’t tell whether the hand is open or closed,
which was an element present in some mistakes), limitations
in the algorithm (for example, the analysis algorithm analy-
ses each bone individually, so it would not detect mistakes
that had to do with the relation of the movement of one bone
to another).

Limitations
Although the Kinect proved to be very accurate in tracking
coarse movements, when limbs were pointed directly at the
camera, or occluded by the body, the overall tracking was
severely penalised. The tracking of hands and feet was not
accurate enough to track some of the mistakes participants
suggested. Also, due to the limitations of the tracking system
, we limited the scope of this work to movements where the
user was standing up and facing the camera, but there are a
wide variety of movements in which the user is in positions
that can’t be tracked by the Kinect. Another limitation im-
posed by the tracking system is that we treat each bone as a
vector in the 3D space, without taking into account the rota-
tion of the bone around its length. This means that there is
currently no support for detecting rotations such as pronation
and supination of the wrist.

Another limitation regards our algorithmic approach. Our cur-
rent implementation looks at the absolute orientation of the
bones. Some of the mistakes participants suggested, however,
in terms of the orientation of the bones in relation to one an-
other. In future versions, we hope to add the support to model
a hierarchy of bones that can be used to address this problem
and suggest more valuable feedback.

Our evaluation has two main limitations. First, we only evalu-
ated the algorithmic approach with a single user. Even though
the system was designed for remote collaboration between
multiple users, we still need to run another study to evaluate
this aspect. The second limitation is the realism of the en-
vironment. In the real world, such system would be used by
athletes and trainers or patients and physiotherapists. We eval-
uated the system for its expressiveness by letting the users
choose their own movements, but further work is necessary
to ensure that the system attends the requirements for specific
application domains.

In this work, we explored the general communication process
between experts and novices when transmitting movement in-
formation as described in Figure 1 and built a system that is
a first step in implementing it, focusing on how experts can
use it to model movements and configure feedback. Even
though it was outside the scope of this paper, there is yet a
great amount of work to be done in how effectively this in-
formation is actually conveyed to novices and how much the
feedback impacts their performances.



Future Work
Since providing an unambiguous and accurate way to commu-
nicate motion information is quite an ambitious goal, there
are many areas that could be explored in future work. In the
lowest levels, there is the need to provide support for more
sophisticated tracking approaches. In the algorithmic side,
while our approach seemed to extract an accurate model and
to perform an accurate analysis, there is plenty of room for
improvement, including using more complex curve analysis
techniques, such as dynamic time warping. Also, our current
approach relies entirely on our algorithm for the extraction of
the model. We would like to include support for including
rule-based constraints so that users could also encode expert
knowledge explicitly in the model.

The next step, however, is to close the loop between the expert
and the user, by exploring the best way to provide feedback.
Whilst this work has shown that it is possible to encode mo-
tion information that can be used to quantitatively analyse per-
formances and to use this analysis to provide feedback, there
is a huge range of possibilities of how this feedback may be.
Topics of interest in this sense include multi-modal interac-
tion, information architecture, semiotics, etc.

CONCLUSION
Due to the complexity of human motion, conveying move-
ment information is still a difficult problem. In this work, we
showed that even people with a lot of experience with very
well defined movements can’t give an accurate quantitative
description of such movements. The need for an intuitive way
of codifying motion information inspired us to develop an al-
gorithmic approach to model and to analyse movements. We
implemented a working prototype of a system that employs
these algorithms to enable users to demonstrate movements
and that generates automatically a feedback system for the
demonstrated movement which can spot mistakes and guide
users in improving their performances.
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