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ABSTRACT
Gaze is frequently explored in public display research given
its importance for monitoring and analysing audience atten-
tion. However, current gaze-enabled public display interfaces
require either special-purpose eye tracking equipment or ex-
plicit personal calibration for each individual user. We present
AggreGaze, a novel method for estimating spatio-temporal
audience attention on public displays. Our method requires
only a single off-the-shelf camera attached to the display, does
not require any personal calibration, and provides visual atten-
tion estimates across the full display. We achieve this by 1)
compensating for errors of state-of-the-art appearance-based
gaze estimation methods through on-site training data collec-
tion, and by 2) aggregating uncalibrated and thus inaccurate
gaze estimates of multiple users into joint attention estimates.
We propose different visual stimuli for this compensation: a
standard 9-point calibration, moving targets, text and visual
stimuli embedded into the display content, as well as normal
video content. Based on a two-week deployment in a public
space, we demonstrate the effectiveness of our method for
estimating attention maps that closely resemble ground-truth
audience gaze distributions.
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INTRODUCTION
Human gaze serves a dual purpose in the context of public dis-
plays. First, gaze is an appealing modality for interaction [15]
given that it is faster than the mouse for pointing [37, 53]
and can be intuitive to use [46]. Second, gaze naturally indi-
cates what users are interested in and can therefore be used
to monitor audience attention [2]. Measuring visual attention
is particularly relevant for non-interactive (passive) displays
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Figure 1: AggreGaze is built upon a state-of-the art
appearance-based gaze estimation method, and applies a user-
independent error compensation function obtained from on-
site training data. Compensated gaze positions are aggregated
to compute 2D audience attention maps.

and enables various applications, such as the analysis of the
effectiveness of advertisements [35], and the study of display
blindness effects [11, 28] and, more generally, is key to the
development of pervasive attentive user interfaces [9].

Interactive displays typically require special-purpose station-
ary or head-mounted eye tracking equipment as well as cal-
ibration for each user prior to first use [24, 40, 44]. Recent
interfaces rely on interaction techniques that require neither
accurate point-of-gaze estimates nor cumbersome calibration,
such as smooth pursuits [16, 46] or short glances to the left
and right [57, 59]. Still, all of these interfaces support only a
single user at a time and typically require that users remain in
a fixed position in front of the display.

In contrast, passively monitoring attention of multiple users
on public displays is significantly more challenging, given
that users can look at the display from arbitrary distances and
angles, and also while on the move. While recent advances
in appearance-based methods promise gaze estimation in the
wild without personal calibration [56, 50], how to transfer a
gaze estimator trained in one setting, for example a laptop, to
another setting, such as a public display, remains unsolved.

We present AggreGaze, a novel method for estimating audi-
ence attention on public displays. Our method is calibration-
free, provides 2D attention maps across the full display, and
requires only a single off-the-shelf RGB camera attached to
the display. AggreGaze addresses the limited gaze estimation
accuracy of a state-of-the-art appearance-based gaze estima-
tion method [50] for public displays in two ways: We first
train a mapping function on top of the gaze estimator to com-



pensate for errors caused by differences in camera angles and
illumination between training and deployment. We explore
different visual stimuli to collect data for this compensation:
ranging from a standard 9-point and moving target design [19,
32, 48], to text and visual stimuli embedded into the normal
display content, to regular video content. In addition, our
method aggregates gaze estimates from different users to com-
pute overall attention distribution even if these estimates are
inaccurate and thus unreliable on their own (see Figure 1).
This way, our method can generate spatio-temporal heatmaps
of audience attention. These heatmaps could, for example, be
used by content providers to analyse whether the audience is
paying attention to the intended on-screen locations. Such an
analysis could be further extended to automatic adjustment of
the displayed information for improved noticeability.

The specific contributions of this work are three-fold. First,
we present AggreGaze, a novel method for collective attention
estimation on public displays. Our method 1) requires only
a single off-the-shelf camera attached to the display, 2) is
calibration-free, 3) provides attention estimates across the full
display, and 4) supports multiple users. Second, we introduce
a method for error compensation to cope with differences in
camera angle and illumination, and propose different ways of
embedding visual stimuli into the display content to collect
training data for this compensation. Third, we present a real-
world evaluation of AggreGaze and the different visual stimuli
by deploying the system in a public space for two weeks. Our
results demonstrate that the aggregated attention maps closely
resemble ground-truth distributions of human fixations.

RELATED WORK
Our work builds on previous methods for measuring attention
on public displays as well as analysing and visualising gaze
observations from multiple users.

Measuring Attention on Public Displays
A large body of work has studied methods to measure users’
attention on public displays. Head-mounted eye trackers have
successfully been used for gaze interaction and for measuring
attention in controlled settings (see [24, 39, 47] for some
examples). However, augmenting the users is not practical
for public displays that are deployed in unconstrained settings
and used by a large number of unknown users. To address this
problem, other works relied on eye trackers mounted to the
public display [32, 46]. However, the limited tracking range of
current eye trackers requires users to stand at a fixed position
in front of the display. While simple infrared sensors can be
used without any personal calibration [36, 45] they can only
detect eye contact.

In contrast, off-the-shelf RGB cameras can be easily set up
and can cover a much larger field of view. Zhang et al. pro-
posed a system to detect relative eye movements as input for
public display interaction [57, 58]. However, their method
only detects glances away from the center of the display and
does not provide full-screen attention estimates. At the same
time, appearance-based gaze estimation methods have recently
seen significant advances in the computer vision community.

Current approaches enable personal calibration-free gaze esti-
mation [43], even in uncontrolled in-the-wild settings [50, 56],
by leveraging large amounts of real or synthetic [49] training
data. However, long-distance gaze estimation without personal
calibration, as required for public displays, is still a difficult
task even for state-of-the-art methods. The remaining signif-
icant challenge is to transfer a gaze estimator trained for a
different setting, for example a laptop [56], to a public display.
To cope with this challenge, we propose an additional device-
specific error compensation training on top of a state-of-the-art
appearance-based gaze estimation method.

For settings in which gaze is not available, head pose or body
orientation can be used as a substitute, but can only provide
coarse attention estimates [3, 38, 52]. Alternatively, com-
putational models of visual attention can be used to predict
attention distributions in a bottom-up manner [6]. Recent
works have extended the scope of these models to interactive
settings [7, 51]. However, the predictive power of these mod-
els is still limited, given that they only use visual information
and neglect top-down influences on attention, such as users’
tasks, goals, or intents.

Visualisation of Multiple Gaze Observations
Visualising gaze data recorded from multiple users is a core
topic in eye tracking and information visualisation research.
Blascheck et al. [5] surveyed different gaze data visualisation
techniques and categorised them into nine groups based on
properties of eye tracking data. While some methods for
visualising 3D gaze have been proposed [41, 31], the vast
majority of works focused on visualising 2D gaze data [13,
22]. One key method is to summarise gaze data recorded on a
particular stimulus, such as an image, into attention heatmaps.
These heatmaps typically encode the frequency and duration
of fixations on different parts of the stimulus. Given their
straightforward interpretability, they are widely used outside
academia, for example for marketing or web usability studies.

Methods to visualise attention to dynamic stimuli, such as
videos, are also relevant in the context of public displays
and have been studied intensively. For example, Duchowski
et al. developed a real-time visualisation method to aggre-
gate eye movements from multiple viewers via heatmaps [12].
Kurzhals et al. used data of several viewers to identify trends
in the general viewing behaviour and visualised them using
a novel space-time visualisation [23]. In a later work they
introduced another method that allowed for spatio-temporal
analysis using clustering of multiple viewers’ gaze [21]. In all
of these works, individual gaze measurements are aggregated
to represent general characteristics of viewers’ attention but
this approach has so far not been used outside the area of gaze
visualisation.

ESTIMATION OF AUDIENCE ATTENTION
Our method for attention estimation on public displays is
built upon a state-of-the-art appearance-based gaze estimation
method based on a multimodal convolutional neural network
(CNN) (see Figure 2). Appearance-based methods directly
learn a mapping from eye appearance to gaze direction with-
out performing any explicit eye feature detection, such as
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Figure 2: Appearance-based gaze estimation pipeline used in AggreGaze. We first employ state-of-the-art face and facial landmark
detection methods to locate landmarks in the input image obtained from the calibrated monocular RGB camera. We then fit
a generic 3D face model to estimate 3D head poses and apply a normalisation technique to crop and warp the head pose and
eye images to a normalised space. Finally, we use a state-of-the-art multimodal convolutional neural network (CNN) to learn a
mapping from the head poses hhh and eye images eee to gaze directions vvv.

of the eye corners or pupil center. We train the multimodal
CNN model [56] with deeper network architecture, on a large
synthetic dataset [49] that we specifically target to the public
display setting. However, in the public display setting there
still remains a large gaze estimation error caused by differ-
ences between training and deployment, such as camera angle
and ambient illumination, as well as appearance variations
across different users. To address this issue, we propose error
compensation and aggregation steps on top of the appearance-
based gaze estimation pipeline (see Figure 3).

Appearance-Based Gaze Estimation
Figure 2 provides an overview of the appearance-based gaze es-
timation pipeline. The input videos to the pipeline are recorded
from a monocular RGB camera mounted on the public display.
The intrinsic parameters of the camera and the 3D pose of the
target display in the camera coordinate system are calibrated
using a mirror-based method [33]. We first detect all faces in
the input images using a HOG-SVM face detector [18]. We
then use a method for facial landmark detection and tracking to
output 2D facial landmark positions (left and right eye corners
and mouth corners) in the face image [4]. The detected facial
landmark positions are used to estimate the user’s 3D head
pose by fitting them to a generic 3D facial shape model. We
use the generic 3D facial shape model provided by [56]. We
then apply an image normalisation as described in [43] to crop
the eye image eee and warp head pose to a normalised space
with a head angle vector hhh. This normalisation eliminates the
head rotation in roll angle and scales the image to a predefined
distance, thereby effectively restricting the training data space
to a limited range of gaze and head angles.

The normalisation process is applied to both left and right eyes.
The cropped eye image eee and head angle hhh are then used as
input for the CNN gaze estimation model, which predicts the
gaze angle g in the normalised space. We replaced the CNN
network of the original model [56] with a deeper AlexNet
architecture [20]. The network includes 5 convolutional layers,
2 fully connected layers, and one output layer. While the
original model assumes input images with a size of 227×
227 pixels, we instead use a size of 60× 36 pixels, since
in our public display setting input eye images tend to be low
resolution. Reflecting this change in input size, we also change
the stride parameter of the first convolutional layer from 4 to
1. We concatenate the head angle vector hhh at the end of output
of the first fully connected layer as proposed in [56].
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Figure 3: Overview of the error compensation and aggregation
processes. The error compensation function is trained with
training data collected using gaze target stimuli, and applied
to individual estimates. These compensated gaze positions are
time-synchronised and aggregated to create a final attention
map representation.

For CNN model training, we initialise the convolutional layers
using a pre-trained model on the LSVRC-2010 ImageNet
training set [34]. Due to the different input image size, two
fully connected layers are trained from scratch. We follow the
approach in [50]: first train the model with 100,000 images
synthesised with the tool provided with [49], and then fine-
tune the model with the UT dataset [43]. In order to target to
our setup where the camera is mounted on top of the target
display, we also restrict the training samples so that the vertical
gaze direction is below 0 degrees in the camera coordinate
system. In this way, the training data only includes eye images
looking below the camera.

The output of the last layer is the two-dimensional gaze angle
vector vvv in the normalised space. The gaze angle vvv is then
back-projected to a 3D gaze vector in the camera coordinate
system as a gaze ray extending from the 3D position of the
eye. The intersection of the gaze ray with the display plane
yields the final gaze point ggg on the display.

Handling Gaze Estimation Error Sources
As we will discuss in the experiments section, the perfor-
mance of the appearance-based gaze estimation tends to be
significantly lower even with the deeper network and targeted



training data. The difficulty comes from two main sources: ap-
pearance variation across different users as well as differences
between training and deployment. The first factor, appear-
ance variation, is user-specific and represents a fundamental
challenge for learning-based person-independent gaze estima-
tion methods [56]. Without personal calibration, it is difficult
to obtain robust and accurate estimation across many users.
The second factor is also an important limitation of current
learning-based approaches. We observed large global error
if the trained estimator was used in a different environment,
e.g. if used with a camera positioned at a different angle, for
a different on-screen gaze range, or under different illumina-
tion conditions. Since the gaze estimation method includes a
geometric computation of intersecting the estimated 3D gaze
rays to the screen, there can be additional global errors caused
by inaccuracies in the geometric calibration. As illustrated in
Figure 3, we propose two approaches to address the environ-
mental and personal error, respectively: error compensation
and gaze aggregation.

Error Compensation
In general, learning-based gaze estimation methods can only
properly handle cases included in the training data, and esti-
mation results therefore tend to be biased towards the training
environment. Such error factors essentially act as a bias to the
estimation results, depending on input head position range and
environmental properties such as illumination conditions and
geometry of the target display plane.

To address this issue, we first apply an additional environ-
mental error compensation function on top of the appearance-
based gaze estimation model. Suppose that we have a set
of training samples {(ppp,gggl ,gggr), ĝgg}, where (ppp,gggl ,gggr) are the
gaze estimation results from the appearance-based gaze esti-
mation pipeline (the user’s 3D head position and estimated
gaze positions from left and right eyes, respectively) and ĝgg is
the ground-truth on-screen gaze position. The error compensa-
tion function is then learned using a regression on this training
data ĝgg = f (ppp,gggl ,gggr). In this work, we use a support vector
regression (SVR) with a radial basis function kernel.

This compensation function is not dependent on individual
users, and we assume only one training for each deployment.
While in the best case this can be done by recruiting partici-
pants for training data collection, it is practically important to
investigate whether it is possible to collect training data from
actual audiences by inserting visual stimuli with expected
ground-truth gaze positions. In the following sections we also
discuss the design space for obtaining training samples, from a
fully controlled pre-training to on-site training data collection
using natural content.

Gaze Aggregation
On the other hand, personal error compensation ultimately re-
quires training data for each user. However, in unconstrained
public display setups it is unrealistic to assume that such a
training data collection will be possible. One important prop-
erty of public display setups is that they have to deal with the
same users visiting a display multiple times over the course
of days, weeks, or even months. Therefore, the input to at-
tention monitoring systems becomes a set of estimated gaze

positions accumulated from many audiences. In this sense,
the practically most important task is not to reduce individual
gaze estimation error but to estimate the attention distribution
from these low-accuracy observations.

Therefore, we propose to create an attention map from individ-
ual gaze positions to analyse and visualise audiences’ attention
distribution over the display. We aggregate time-synchronised
appearance-based gaze estimation results across multiple users
to recover the spatio-temporal attention distribution. The per-
sonal error can be assumed to be normally distributed, and the
gaze estimation results can be considered as noisy samples
drawn from the true attention distribution (see further analysis
in the experiments section).

For each time frame t of video stimuli shown on the public
display, we accumulate a set of (compensated) on-screen gaze
positions {ĝggi}t from multiple audiences. We then approximate
this set of observations as a normal distribution by computing
their mean and variance. This provides us an approximated
probability distribution of audience attention. In the experi-
ments, we show that this aggregated attention distribution can
represent ground-truth human gaze distributions well.

Implementation Details
The appearance-based gaze estimation pipeline is imple-
mented in C++. The facial landmark tracking step uses the
CLM-framework1 with the face detection module from the
dlib library [17]. The 3D facial shape model fitting is done
with the PnP algorithm implementation in the OpenCV [8].
For the CNN-based gaze estimation, we train and use the
AlexNet model2 with the Caffe library [14]. From each of the
recorded video sequences, this pipeline outputs left/right eye
gaze positions corresponding to all detected faces.

The error compensation and aggregation pipeline is imple-
mented in Python. The SVR implementation in the scikit-
learn [29] is used for the error compensation step, and the
hyper parameters are optimised via randomised search. Given
the training data, this converts the original estimation results
from the appearance-based gaze estimation pipeline to error-
compensated on-screen gaze positions. These input video
frames and gaze estimation data are time-synchronised with
the nearest frames of their corresponding stimuli shown on
the public display. The aggregation step then computes and
saves means and variances of all of the error-compensated
gaze positions for each frame of the displayed stimuli.

DATA COLLECTION
We study our AggreGaze approach using in-the-wild data
collected using a public display setup. The purpose of this
data collection is two-fold: 1) to collect test data for evaluating
our method in comparison with ground-truth eye tracking data,
and 2) to study different visual stimuli designs for collecting
training data for environmental error compensation.

1https://github.com/TadasBaltrusaitis/CLM-framework
2https://github.com/BVLC/caffe/tree/master/models/bvlc_
alexnet

https://github.com/TadasBaltrusaitis/CLM-framework
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
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Figure 4: Different visual stimuli explored in this work to
train the error compensation mapping: discrete 9-point (a) and
pursuit (b), text (c) and logo (d) embedded into the normal
display content, as well as regular video content (e).

Figure 5: We deployed AggreGaze in a public space for two
weeks. The recording setup consisted of iiyama ProLite 46-
inch display, a Logitech C930e webcam, and a host computer
running our custom recording software.

Natural Video Stimuli
For data collection, we used two different video sources. We
first picked eight 30-second video clips of papers presented
at UIST 2015. These videos contain complex textural and
visual components and thereby represent typical content dis-
played on public displays. In addition, we used two existing
video datasets with ground-truth human gaze annotations. The
first dataset is created by Coutrot et al., and contains 72 natu-
ral videos from four different categories: one moving object,
several moving objects, landscapes, and people having a con-
versation [10]. The second dataset is the Hollywood2 dataset,
which consists of short video clips sampled from 69 popular

Hollywood movies [26]. Mathe et al. published eye tracking
data on the Hollywood2 dataset [27]. This way, ground-truth
gaze positions from 15∼ 20 viewers recorded using commer-
cial eye trackers are available for both of these datasets.

Visual Stimuli for Error Compensation
As discussed before, a key challenge is to collect training
data for environmental error compensation. In this work, we
propose and evaluate several different gaze target designs
for training data collection. In addition to a fully controlled
data collection scenario with explicit instructions to users, we
also consider an unconstrained data collection scenario where
video stimuli for training data collection are embedded to
various degrees into normal display content.

Stationary Targets
The most straightforward design for training data collection is
to show stationary gaze targets. While most of the eye tracking
systems use animated dot stimuli to ensure clear attention
focus, we simply show static targets, assuming that not all of
the audiences in our setting are focusing on this target stimuli.
As illustrated in Figure 4 (a), gaze target markers appear at
nine predefined discrete grid positions randomly, and stay at
each point for 1.6 seconds. In addition to the standard design
using red dots as target markers, we also test a design using
an ordinary small image (the UIST 2016 logo).

Pursuit Targets
Another visual stimulus used for eye tracking systems is mov-
ing gaze targets [19, 32, 48]. Unlike stationary design, we
can expect fast and efficient coverage over the display space.
In our study, we took a Z-shaped design as in Figure 4 (b).
Target markers start from the top-left position, and move to
each corner with 10 mm per second velocity. The markers stay
at the corners for 1 second. Similarly to the stationary target
case, we also test both simple dot targets and small image
targets.

Embedded Targets
While the above two designs assume dedicated videos for train-
ing data collection, it is also practically important to consider
embedding visual stimuli into video contents. We consider
two embedding designs: text ticker and edge logo. For the
text ticker design, we sampled short headline texts from the
ACM technews website3, and displayed random headlines on
both top and bottom of the videos as in Figure 4 (c). The logo
image pops up at the leftmost corner, and texts are displayed
gradually (25 characters per second). For the edge logo de-
sign, we used the same UIST 2016 logo image and moved
its position along the image edges (13 mm per second) as in
Figure 4 (d).

Videos
A more advanced approach for content-embedded training
data collection is using videos where ground-truth gaze dis-
tribution can be inferred from pre-recorded human gaze pat-
terns [1] or bottom-up saliency models [42]. While these
prior approaches focus on personal calibration using gaze and
saliency patterns on the test input video, the main focus of this
3http://technews.acm.org/

http://technews.acm.org/


work is person-independent error compensation. From dataset
videos described above, we extract gaze positions for each
frame as in Figure 4 (e). We use mean gaze positions for map-
ping training, and the mapping performance is evaluated on
other videos. Similarly, we apply image-based saliency predic-
tion for these videos, and use maximum positions of saliency
prediction results as gaze labels. As the saliency prediction
model, we combined a bottom-up prediction model (boolean
map saliency) [25] and a top-down face detection [54].

Data Collection Protocol
For data collection, we set up iiyama ProLite 46-inch dis-
play in a public space. A full HD webcam with 90 degree
field of view (Logitech c930e) was mounted on top of the
display. Video stimuli and captured camera images are both
timestamped by the host computer, and saved in parallel dur-
ing recordings. Using this recording setup and the above-
mentioned video stimuli, we conducted two different data
collections in a public space. In addition to 19 participants (6
female) with an age range between 20 and 29 years (M=24.9,
SD=2.49) recruited for data collection, we recorded all faces
that appeared in front of the recording display.

Controlled Condition
We first started from a fully controlled data collection with
twelve participants. We explicitly asked them to perform a
training data collection using the stationary gaze targets. More
specifically, we defined nine positions in front of the display.
Participants were asked to stand in each position sequentially
and to look at target positions indicated on the display. Similar
to the stationary design, we showed red dots at 60 (10× 6
grid) positions. This provides us the most ideal one-time
training data for environmental compensation, with sufficient
variations for both gaze positions and standing positions.

Natural Condition
We then recorded natural reactions of public display view-
ers using 72 video clips including patterns designed for data
collection. This sequence consists of the following video clips.

• 4 explicit calibration patterns (2 stationary, 2 pursuit)
• 12 embedded calibration patterns
• 8 UIST videos
• 24 Coutrot dataset videos (6 videos per category)
• 24 Hollywood2 dataset videos

In total, the whole loop took roughly 25 minutes.

The above twelve participants performed this natural recording
too, with a rough instruction to watch these 72 videos without
any position restrictions. Another seven participants only
joined this natural recording. Unlike the case of the above
twelve participants, we remotely instructed them to go to the
space where the display is installed, and watch the videos for
a certain time. There is no on-site investigator during these
recordings, and they are expected to behave more naturally
than in the controlled setting.

We played the sequence of video clips for roughly 12 hours
× 13 days. This resulted in 25 faces detected on average
per video (SD=10.4), and hence 25×72 = 1080 faces in to-
tal. Figure 6 shows some sample images from our recording.

As can be seen from the figure, the viewing position varied
significantly during the recording. Passers-by also looked at
the stimuli alone as well as in groups of different sizes, and
while being both stationary and on the move. Figure 6 fur-
ther shows sample eye region images that were used as input
to the appearance-based gaze estimation method. As can be
seen, the eye region images are typically low-resolution, defo-
cused, and blurry, and viewers also wore glasses and make-up.
All of these image properties pose a very challenging setting
for model-based gaze estimation methods, and at the same
time illustrate the advantage of our choice of instead using an
appearance-based method.

EXPERIMENTS
We evaluated AggreGaze by comparing the estimated attention
maps with ground-truth gaze distributions available in the
Coutrot [10] and Hollywood2 [26, 27] datasets.

Performance Analysis of the Baseline Method
We first evaluated the baseline performance of the appearance-
based gaze estimation method and the effect of the error com-
pensation. Figure 7 shows mean gaze estimation error on the
public display across 12 participants in the controlled record-
ing. Each dot corresponds to one of the nine standing positions
(as viewed from above, with the camera and display position
on the bottom), and their size and colour indicate gaze esti-
mation error defined as Euclidean distance from ground-truth
target positions. Figure 7a corresponds to the original estima-
tion results from the appearance-based gaze estimation, and
Figure 7b corresponds to the results after error compensation.
In Figure 7b, error compensation functions were trained in a
leave-one-person-out manner, i.e., using training data obtained
from other participants.

As can be seen in Figure 7a, original gaze estimation results
have significantly larger error (∼ 30 cm) and the error becomes
increasingly large as standing positions become further from
the near/center position. Our error compensation approach
can greatly reduce these estimation errors (Figure 7b).

Figure 8 illustrates the distribution of the personal error, i.e.,
error remaining after the compensation. From the first five
participants, we randomly picked 100 estimation results after
the error compensation, and plotted their positions relative to
the ground-truth position shown as the central red dot. As dis-
cussed earlier, personal error tends to be normally distributed
around the ground-truth position, and there is no clear personal
bias observed.

Attention Prediction Performance
We then quantified the performance of the AggreGaze ap-
proach using the explicit one-time training. Specifically, we
used the controlled recording sessions as training data, and
compared the predicted attention distribution for dataset videos
with ground-truth human fixations.

Since our system aggregates individual gaze positions and
outputs attention distributions, we employed evaluation met-
rics commonly used to evaluate visual saliency maps. Area
under curve (AUC) measurement of receiver operating char-
acteristics is one of the most common evaluation criteria for



Figure 6: Sample images recorded during our two-week deployment. Passers-by looked at the visual stimuli shown on the public
display from varying distances, alone as well as in different sized groups, and while stationary as well as on the move. Also shown
are the detected face bounding boxes in red (faces pixelated only here for privacy reasons). The bottom rows show sample close-up
eye region images extracted using the face and facial landmark detections. The unconstrained setting results in images that are
low-resolution, defocused, and blurry. An additional complication is that glasses and make-up are worn by many of the viewers.

saliency maps. We employed shuffled AUC [55], where true
positive samples are taken from ground-truth fixation loca-
tions and false positive samples are taken according to global
fixation distribution on all other frames. Normalised scan-
path saliency (NSS) is another common metric, defined as the
mean value of normalised zero-mean attention maps at ground-
truth fixation locations [30]. As a baseline, we compared the
performance with the original appearance-based gaze estima-
tion results without environmental error compensation, and
attention prediction results using purely image-based saliency
models. We also show the case where our attention prediction
and bottom-up saliency prediction were jointly used. In this
case, our prediction result was used as a prior distribution map
for visual saliency, and multiplied to bottom-up saliency maps.

Figure 9 shows shuffled AUC and NSS scores of all meth-
ods. Original corresponds to the attention maps computed
without error compensation. We took mean positions of the
original left and right eye outputs (gggl , gggr) instead of the com-
pensated positions ĝgg, and aggregated them in the same manner.
Saliency corresponds to the image-based saliency prediction
results, and we used the same models as discussed in the target
stimuli design. Mean corresponds to another content-based
baseline, where the attention map was created from overall
distribution of ground-truth gaze positions. We merged gaze
positions across all frames/videos of the ground-truth data, and
created the mean attention map. Proposed corresponds to our
AggreGaze method. The proposed approach outperforms all
of these baseline methods, and the performance improvement

from the best baseline (Mean) is statistically significant in both
metrics (paired t-test, p < 0.01).

In Figure 10, we show examples of attention maps estimated
by our method. Each row shows saliency maps, mean atten-
tion maps and aggregated attention maps from our method,
respectively. Overlaid white dots represent ground-truth gaze
positions. While saliency maps in general can represent human
fixation locations, they also tend to have many false-positive
regions. The mean map always stays at the center of images,
and basically cannot represent dynamics of attention distribu-
tion. In contrast, attention maps predicted by AggreGaze are
well correlated with ground-truth gaze positions.

Gaze Target Design
In Figure 11, we further compared the attention prediction
performance using different target designs for the environmen-
tal error compensation. We used only the natural recording
sessions, and used each of the gaze target stimuli to train dif-
ferent error compensation functions. From top to bottom, each
plot corresponds to template saliency/gaze, embedded text
ticker and edge logo patterns, pursuit and discrete gaze targets.
The last plot corresponds to the controlled calibration result
discussed above. For results using template saliency/gaze, the
video clip used to train the mapping function was excluded
from the test set.

As can be seen, explicit gaze targets (Stationary, Pursuit) em-
bedded in the recording loop provide training data as good as
the fully controlled recording. The edge logo design (Station-
ary) also performs similarly well, while the performance is
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Figure 7: Gaze estimation error at different positions in front
of the public display for the controlled condition. The bubble
size and colour both correspond to the gaze estimation error
in millimeters shown on the right side. We show results for (a)
the original appearance-based gaze estimation method and (b)
after our error compensation.

degraded with the text ticker design (Text). Compared to these
cases with relatively clear gaze targets, the performance with
template saliency/gaze patterns is relatively low.

DISCUSSION
Our experimental results show that the proposed AggreGaze
approach can estimate spatio-temporal attention maps that
closely resemble ground-truth gaze distributions in a challeng-
ing public display setting, i.e. for multiple users and without
personal calibration or special-purpose equipment. The key
idea of our approach, i.e., compensating for environmental
error from on-site training data and aggregating multiple ob-
servations to approximate attention distributions, provides a
novel way to deploy and practically use learning-based gaze
estimation methods in unconstrained in-the-wild environments.
While the image-based saliency prediction baseline only per-
forms well for natural video stimuli, our method can predict
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Figure 8: Personal gaze estimation error of the first five partic-
ipants for the controlled condition. We randomly picked 100
gaze estimates after the error compensation and plotted their
position relative to the ground-truth gaze point (red dot).
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Figure 9: Performance comparison between AggreGaze and
the different baseline methods. The bars show shuffled AUC
and NSS scores for the original estimation results without
error compensation, saliency maps, mean attention maps, and
the collective attention maps from AggreGaze.

attention maps for any kind of display content. Similarly, al-
though the mean attention baseline performs surprisingly well
in terms of saliency metrics, the practical meaning of such a
static attention prediction is inherently limited.

By analysing different gaze target designs, we found that the
error compensation function can be trained efficiently using
on-site training data collected by embedding gaze targets into
the display content. This underlines the potential of the Ag-
greGaze approach to be directly deployed in real-world envi-
ronments. On the other hand, the performance of more natural
patterns, such as text ticker and template gaze, is still limited.
We believe this is because human gaze behaviour is more am-
biguous in these cases than explicit target positions, and the
strong center bias of template gaze patterns poses additional
challenges for global error compensation. Consequently, an
important direction for future research will be to investigate
other embeddings and thus means for on-site training data
collection.
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Figure 10: Examples of attention prediction results. Each row shows saliency maps, mean attention maps and aggregated attention
maps from our method, respectively, with overlaid white dots representing ground-truth gaze positions. Images are taken from the
Coutrot dataset.
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Figure 11: Performance comparison with different training
targets. The bars show shuffled AUC and NSS scores for
AggreGaze using training data collected with different stimuli:
saliency and gaze of videos, embedded text and edge target,
pursuit and 9-point gaze target and the fully controlled training
data.

Our method will further benefit from improvements in the
underlying gaze estimation methods, which is an active area
of research in computer vision. While gaze estimation per-
formance has recently improved significantly through the use
of deep learning methods [49, 56], current methods still face
problems with varying outdoor illumination as well as low-
quality input images. Therefore, it is important for future
work to develop accurate gaze estimation methods that work
robustly under real-world conditions. While the current system
assumes a single normal distribution, such estimation improve-
ments will also allow us to approximate audience attention
more precisely as a multi-modal distribution.

CONCLUSION
We presented AggreGaze, a novel method for estimating audi-
ence attention on public displays. Our method applies a device-
specific error compensation to state-of-the-art appearance-
based gaze estimation through on-site training data collection,

and aggregates individual observations to estimate joint atten-
tion maps. Our method requires only a single off-the-shelf
camera attached to the display, does not require any personal
calibration, and provides an estimate of visual attention for the
full display. Results from a two-week-long deployment in a
public space show that the estimated attention maps closely
resemble ground-truth distributions of human fixations. Our
method therefore represents an important step towards unob-
trusive yet accurate monitoring of audience attention on public
displays and, more generally, opens up new directions for
research on pervasive attentive user interfaces.
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