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ABSTRACT
Head-mounted eye tracking has significant potential for gaze-
based applications such as life logging, mental health moni-
toring, or the quantified self. A neglected challenge for the
long-term recordings required by these applications is that
drift in the initial person-specific eye tracker calibration, for
example caused by physical activity, can severely impact gaze
estimation accuracy and thus system performance and user
experience. We first analyse calibration drift on a new dataset
of natural gaze data recorded using synchronised video-based
and Electrooculography-based eye trackers of 20 users per-
forming everyday activities in a mobile setting. Based on this
analysis we present a method to automatically self-calibrate
head-mounted eye trackers based on a computational model
of bottom-up visual saliency. Through evaluations on the
dataset we show that our method 1) is effective in reducing
calibration drift in calibrated eye trackers and 2) given suffi-
cient data, can achieve gaze estimation accuracy competitive
with that of a calibrated eye tracker, without any manual cal-
ibration.
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INTRODUCTION
Gaze is a compelling modality for human-computer interac-
tion [28] and explicit gaze interaction techniques on, e.g.,
hand-held and ambient displays [35, 39, 40] have been stud-
ied extensively over many years. The recent advent of
lightweight head-mounted eye trackers is starting to cause
a paradigm shift towards gaze interaction in daily-life set-
tings and applications in which human gaze behaviour is anal-
ysed continuously over hours or even days [10, 34]. Gaze
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Figure 1: Our method automatically calibrates a head-head
mounted eye tracker using gaze input features and visual
saliency maps calculated on the egocentric scene video.

behaviour analysis has significant potential for a range of
HCI applications, such as human activity and context recog-
nition [8, 9, 38], life logging [20, 19], mental health monitor-
ing [41], or for quantifying everyday reading behaviour [26].

One major limitation of state-of-the-art head-mounted eye
trackers is that they have to be calibrated to each user prior
to first use. This initial calibration typically requires the user
to look at a set of predefined targets to establish a mapping
from eyeball rotations to gaze positions in the user’s visual
scene. A second limitation is that this calibration is currently
assumed to be static, i.e. not to change (drift) over time. Par-
ticularly in mobile daily-life settings, however, shifts of the
eye tracker on the head, e.g. caused by physical activities
or the user touching or even taking off the eye tracker, are
very likely to occur and can cause significant calibration drift,
thereby considerably reducing gaze estimation accuracy. To
address the problem of calibration drift, the eye tracker could
be recalibrated frequently. However, frequent recalibration
would be time-consuming and disruptive and therefore im-
practical for real-world use.

In this work we propose a novel method to self-calibrate
head-mounted eye trackers, i.e. to establish an accurate map-
ping of pupil positions to gaze positions in the visual scene
without the need for any explicit (re-)calibration. In contrast
to existing calibration routines that use a single initial calibra-
tion, our method is designed to run continuously and update
the gaze mapping transparently in the background. While
such a continuous calibration approach is taken in other wear-
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able systems such as eye alignment for optical see-through
displays [22, 31], it has not yet been fully investigated in the
mobile eye tracking literature. This approach has two distinct
advantages over state-of-the-art methods that only use an ini-
tial calibration: Our approach does not require the user to
perform any time-consuming and cumbersome explicit cali-
bration actions, and it embraces the inevitable calibration drift
and compensates for it permanently.

The core of our method is a visual saliency model that simu-
lates the perceptual mechanisms of human bottom-up visual
attention and computes 2D probability maps of where in the
visual scene the user is more likely to fixate on [6]. Although
even state-of-the-art saliency models cannot perfectly locate
exact gaze positions, the statistical correlation between gaze
positions and saliency values can be enhanced by aggregating
multiple maps [36]. The proposed robust mapping method
uses aggregated maps to either compensate for drift in the
initial eye tracker calibration or to establish a gaze mapping
from scratch over time (see Figure 1).

To better understand calibration drift and the real-world ap-
plicability of the saliency-based calibration approach, we
present a new gaze dataset of 20 users performing every-
day activities in a naturalistic scenario. Our dataset con-
tains synchronised egocentric videos as well as gaze data
from a head-mounted video-based and an Electrooculogra-
phy (EOG)-based eye tracker. We quantify calibration drift
on the dataset and compare the performance of the proposed
self-calibration method with a standard calibration routine.
We show that our method is effective in reducing drift in
calibrated eye trackers and given sufficient data, can achieve
competitive gaze estimation accuracy without any initial eye
tracker calibration.

The specific contributions of this work are threefold. First,
we characterise calibration drift during daily-life recordings
on a new dataset. Second, based on this analysis, we propose
a novel method for eye tracker self-calibration using visual
saliency models. To address challenges of saliency predic-
tion in mobile settings, we further introduce a novel robust
mapping method that approximates the mapping task as a ro-
tation alignment. Finally, we evaluate our method for both
video and EOG-based self-calibration in two scenarios with
and without initial user-specific calibration.

RELATED WORK

Head-Mounted Eye Tracking
The two most common approaches for head-mounted eye
tracking are video-based and electrooculography (EOG)-
based (see Figure 2 for a sample video-based and EOG-
based system). Video-based approaches provide more accu-
rate gaze estimates and are therefore the most popular method
to date [17]. Most recently the trend is toward to low-cost de-
vices, including open-source hardware [25]. Video-based eye
trackers typically track pupil positions using an eye camera
and map them to gaze positions in the scene camera. This
mapping has to be established using a user-specific calibra-
tion routine and is currently assumed to be a static relation-
ship. As for stationary remote eye trackers, it is possible to

Figure 2: Left: video-based Pupil Pro eye tracker, right:
EOG-based tracker based on the TMSI Mobi6.

eliminate the effect of changes in eye and head position via
3D gaze estimation. However, such techniques require addi-
tional hardware, such as multiple light sources [16], and they
often assume a fixed physical relationship between the eye
camera and the stimuli (i.e. the scene camera in mobile set-
tings). Hence, they pose strict constraints on the hardware
design and are more difficult to implement. In contrast, our
self-calibration approach does not rely on additional equip-
ment and can therefore be easily applied to head-mounted eye
trackers.

Electrooculography measures changes in the electric poten-
tial field caused by eyeball rotations using electrodes placed
around the eye. The resulting signal can be used to track
relative eye movements. The key advantage over video is
that EOG only requires lightweight signal processing. It
can therefore be implemented as a self-contained wearable
device, perfectly suited for long-term recordings in daily
life [29, 7]. Recently, EOG was implemented in the first com-
mercial glasses-type device [21].

Calibration-Free Gaze Estimation
Since the requirement for eye tracker calibration can be a
major technical hurdle for gaze interaction, calibration-free
tracking techniques have been a key topic of research inter-
est. For instance, if the 3D pose of the eyeball with respect to
the target plane can be directly measured, it is possible to es-
timate gaze directions [33, 30]. However, as discussed above,
such techniques require specialised hardware and 3D infor-
mation is not always available in mobile settings. As a more
general alternative approach for calibration-free gaze estima-
tion, several works used bottom-up visual saliency maps (or
actual human fixation patterns) to calibrate eye trackers [36,
13, 1]. However, these methods are designed for stationary
remote systems, and they cannot be directly applied to the
mobile setting where the performance of saliency models sig-
nificantly decreases. To the best of our knowledge, this is the
first work to evaluate the idea of saliency-driven eye tracker
calibration (1) in a daily-life mobile setting and (2) with a
generalised formulation that can be applied to both video-
based and EOG-based methods. To this end, we propose a
novel robust mapping approach based on an error analysis on
our real-world dataset.

Characterisation of Gaze Estimation Error
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Figure 3: Sample images recorded using the egocentric camera of the video-based eye tracker showing the large variability in
environments and activities. Faces were obfuscated for privacy reasons.
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Figure 4: Data collection protocol. Each recording consisted
of two recording and three validation sessions. Two recording
sessions took place at different locations, and the whole data
collection session took about 1 hour.

Although state-of-the-art gaze estimation techniques are
claimed to achieve less than one degree error, in practical set-
tings there are several different error sources that affect gaze
recording quality. A couple of recent works analysed gaze
estimation error arising from different sources, such as dis-
parity and physiological differences [18, 14, 3]. Most similar
to this work, John et al. [23] discussed an error model of mo-
bile eye trackers and presented a post-processing method for
error correction. However, their experimental setting was still
limited to a laboratory setting. Calibration drift in daily-life
recording therefore remains unexplored in eye tracking and
gaze interaction research. This work presents the first prin-
cipled study of gaze estimation error using a novel dataset
collected during mobile eye tracking recording sessions.

ANALYSIS OF GAZE ESTIMATION ERROR
We first conducted a data collection to study how calibration
drift affects eye tracking accuracy in real-world settings. We
collected data from both a video-based and EOG-based eye
tracker simultaneously (see Figure 2) and compared the initial
calibration results with ground-truth gaze positions.

Data Collection
A total of 20 participants (10 female) participated in the data
collection. As illustrated in Figure 4, each participant con-
ducted three validation sessions and two recordings at two
different locations. We further divided 20 participants into
two groups of 10 participants which did not share recording
locations. Hence, the whole dataset contains four different
locations, including one outdoor location. For the recording

sessions, the only instruction provided to the participants was
the location where the recording took place, and that they
could behave freely. Accordingly, the data contains various
daily-life activities, such as walking, talking with other per-
sons, using mobile phones, or reading posters, leaflets, and
public displays (see Figure 3). Each recording session took at
least 15 minutes; the whole data collection took about 1 hour
per participant.

Error measurements
In the validation sessions we showed 3D fixation targets to
evaluate gaze estimation errors. Participants were instructed
to look at the differently colored circle in the camera cali-
bration pattern (Figure 4), and the camera calibration routine
recovered both the 3D pose of the calibration pattern and the
camera projection matrix.

For the validation sessions, gaze estimation error is directly
calculated from the recovered 3D positions of the gaze tar-
gets. Recovery of 3D gaze vectors from estimated 2D gaze
positions was done using the camera calibration information
at validation sessions, and the angle from the 3D gaze targets
was evaluated as the error metric. For the recording sessions,
2D ground-truth gaze positions were obtained by linearly in-
terpolating recalibration results from two validation sessions
before and after each recording session (e.g. V1 and V2 are
used for R2). Then, 2D pixel errors were converted to 3D
angular errors based on the camera calibration information.

Apparatus
Figure 2 shows the recording setup. For the video-based set-
ting, we used a Pupil Pro eye tracker [25]. The headset fea-
tures a 720p world camera and an infrared eye camera with
an adjustable camera arm. Egocentric videos were recorded
using the world camera and synchronised via hardware time-
stamps. The Pupil recording software automatically detects
pupil positions in the eye videos. The calibration is done by
showing fixation targets to the participant and the default cal-
ibration routine establishes a polynomial mapping between
pupil and gaze positions. We used physical markers at differ-
ent distances from the participant.

For EOG data collection we used a TMSi Mobi6 that trans-
ferred the data via Bluetooth to a laptop running the Context
Recognition Network (CRN) toolbox for data logging [2]. At
each self-calibration, baseline drift was corrected by subtract-
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(a) Video-based setting (b) EOG-based setting

Figure 5: Calibration drift statistics for (a) video-based and
(b) EOG-based settings.

(a) Eye video frame at session V0 (b) Eye video frame at session V2

Figure 6: Example eye video frames of the participant with
the largest calibration drift.

ing the running average of the input EOG signal. Blinks were
removed in the same manner as described in Bulling et al. [8].

Drift Characteristics
The box plots in Figure 5 provide an overview of the calibra-
tion drift for all 20 participants for the video-based (5a) and
EOG-based (5b) eye tracker for the three validation sessions
(V0, V1, V2) and two recording sessions (R1, R2).

As can be seen from Figure 5a, the gaze estimation error
clearly increased over the course of the recording. While
at V0 the mean error was 3.2° (SD=1.3°), in V2 the max-
imum estimation error reached up to 40 degrees (M=10.1°,
SD=9.2°). Figure 7 shows a more detailed analysis for the
video-based tracker. We divided participants into two groups
according to the error at V2. A participant is categorised
into the calibration drifted group if the error was outside the
95% confidence interval of the initial error distribution at V0,
while the others become the calibration maintained group. 12
out of 20 participants showed calibration drift which in most
cases increased gradually at a more or less constant rate. This
error is likely caused by shifts of the eye tracking headset
and thus pupil positions (see Figure 6 for an example). More
significant drift occurred in the top two cases and was likely
caused by external factors, such as users touching the headset.

Figure 5b shows the corresponding results for the EOG-based
eye tracker. In this case, the first validation session (V0)
is used to calibrate the baseline estimator. We take a linear

Figure 7: Time series variations of estimation errors of the
video-based setting.

(a) Video-based setting (b) EOG-based setting

Figure 8: Examples of spatial distributions of the calibration
drift. Each graph shows a kernel density estimation of the
offset between ground-truth and estimated gaze positions.

regression approach, and the plot V0 represents the resid-
ual error of the mapping. The difficulty in EOG-based es-
timation is the baseline signal drift, and that is present from
the beginning of the recording sessions. It can be also seen
that the error becomes larger in recording sessions. This is
mainly because validation sessions have uniform gaze distri-
bution and it makes the baseline level estimation task easier
than in natural recording cases. Also, EOG signals during
daily-life recordings can contain irregular drift patterns and
baseline drift removal becomes a nontrivial task.

Figure 8 further illustrates the difference between the video
and EOG-based setting. Each graph shows a kernel density
estimation of the offset between ground-truth and estimated
gaze positions in the image space, and both correspond to the
same participant’s same validation session. While the cali-
bration drift happens as a constant shift in the video-based
setting, the EOG-based setting shows a broader distribution.

Insights into the Self-Calibration Approach
From this analysis we can draw two important insights into
how automatic self-calibration can be used in the mobile eye
tracking scenario. First, the analysis demonstrated that cali-
bration drift is indeed a critical problem even for short-term
recordings of one hour. Expected estimation accuracy after a
long recording session can be significantly lower even with an

4



initial calibration. In the worst case, video-based estimation
can become less accurate than EOG-based estimation. If a
similar performance can be expected from a fully bottom-up
calibration which provides a significant advantage in usabil-
ity, it can be considered a promising design choice.

Second, especially in the video-based setting where calibra-
tion drift can be modelled as a spatial shift from the initial cal-
ibration, it is also worth considering an alternative approach
assuming the initial calibration data. If the initial mapping
function is also given as an additional input, the task for the
saliency-based calibration process is to find the spatial drift.
Although this approach still requires the initial calibration ac-
tion, it is expected to provide better performance than the
fully bottom-up approach.

SELF-CALIBRATING EYE TRACKER
As illustrated in Figure 1, self-calibration can be done by con-
tinuously repeating processing of the input data. Our method
requires two synchronised input sources: images from the
scene camera and signals from the eye sensor, i.e. in our case
either pupil positions in the eye camera images or EOG sig-
nals. From these synchronised data, the self-calibration pro-
cess gives a mapping function between the eye sensor signal
and gaze position. The mapping can be used in two ways:
either to refine the gaze estimation on the input data or as a
new gaze estimation function for the next frames.

In the following, we propose two approaches to self-
calibration with and without initial calibration, i.e. given a
certain amount of an input calibration sequence, the system
either 1) calibrates the estimation function from scratch or 2)
adjusts the initial estimation function.

Fully Automatic Self-Calibration
Figure 9 provides an overview of the proposed method for
fully automatic self-calibration without initial calibration.
The scene images are first converted to visual saliency maps,
and the mapping function between the input feature and
gaze position is obtained through self-calibration. The self-
calibration process consists of two sequential steps. In the
aggregation step, saliency maps are clustered according to
the similarity between associated input features in order to
improve the low fixation prediction reliability of raw saliency
maps. The clustering is done in a similar but simplified man-
ner as in Sugano et al. [36] using the mini-batch k-means
algorithm [32]. This results in a smaller set of cluster mean
input features and corresponding mean saliency maps, which
is used in the following mapping step to find the relationship
between the input feature space and gaze coordinate space.

Let x and s be input pairs (mean feature and saliency map re-
spectively) after the aggregation step. In prior work, saliency-
based self calibration was formulated as a direct optimisation
between gaze mapping output and saliency values. In the
simplest form, the task is to find the gaze estimation func-
tion f that globally maximises saliency values at the output
gaze positions. The underlying assumption is that the output
gaze positions lie inside the image (saliency) area, and each
x can be always mapped to somewhere inside s. This as-
sumption holds for stationary eye trackers where images and

videos are displayed on a monitor. However, in mobile cases
users might naturally look outside the scene camera as well,
which can lead to input features that cannot be mapped to any
point in the saliency map.

Robust Rotation Mapping
In order to handle the unreliability of egocentric saliency
maps, we propose a robust rotation regression approach. The
key idea is to introduce the RANSAC [15] approach and ad-
ditional approximations and constraints to the mapping task.

We first assume that the input signal can be embedded in a 2D
subspace, whose axes can be seen as rotations of horizontal
and vertical axes of the scene camera. This approximation is
inspired by the fact that human gaze patterns follow a normal
distribution in the natural viewing condition. In the video-
based setting, the 2D subspace of the polynomial feature can
be constructed via principal components analysis given a cer-
tain number of observations. In the EOG-based setting, sig-
nals are usually measured using two different electrode pairs
and they already correspond to gaze directions.

Since the range of gaze directions is constrained by phys-
ical limitations, we can further assume standard deviations
of the gaze distribution are preliminarily obtained as a user-
independent, hardware-specific setting. This assumption can
be understood as a generalised version of Chen and Ji’s ap-
proach using a Gaussian distribution around the image cen-
tre [13]. In contrast to their stationary setting, gaze patterns
do not share the centre position in our mobile setting, and we
can only rely on the scale of gaze distribution.

Under these assumptions, the mapping function only has to
consider shift and rotation between input and output spaces,
which can be solved by the Kabsch algorithm [24]. To find
the mapping function, we take the RANSAC approach as fol-
lows. Each mean saliency map is represented by the posi-
tion of its maximum value m, and the mapping function is
estimated by finding an optimal random subset of the sam-
ple pairs (xi,mi). Random samples are selected according
to the associated saliency value, i.e. m obtained from higher
saliency peaks are used more frequently during the RANSAC
evaluation. At each random selection, shift and rotation from
the input space x to output space m are computed by the
Kabsch algorithm. The mapping error is evaluated only with
inlier-subset samples, and the best mapping function with
minimum error is selected after a fixed number of trials.

Self-Calibration with Initial Calibration
If we can also assume an initial calibration data, it brings fur-
ther constraints to this mapping task. As illustrated in Fig-
ure 10, the input feature can be mapped to 2D gaze positions
g using the calibration data, instead of the 2D subspace x.
Then, we can employ a simpler mapping model between g
and m, according to the calibration drift model suited to the
input modality. For example, calibration drift of the video-
based tracker can be modelled as a spatial shift (Figure 8a).

Visual Saliency Models
As shown in Figure 11, we use four saliency map models in
our method. We select two fast bottom-up saliency methods
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Figure 9: Method overview. Our self calibration process consists of two sequential steps, aggregation and mapping.

Input 

2D mapping
Initial 

calibration

PCA Rotation 
Scale

Shift
Gaze position

Salient points

Figure 10: Detail of the mapping step. In both cases with
and without initial calibration, we approximate the mapping
task as 2D space alignment to the output space. The input
feature space is first mapped to a 2D space using either PCA
or initial calibration, and aligned with the gaze position space
using data sampled from saliency maps.

Face
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Figure 11: Examples of saliency models used in our frame-
work. We combine two bottom-up methods (FES and BMS)
and two object (face and pedestrian) detection methods.

which are highly ranked in the MIT saliency benchmark [11]
since computational cost is the most important factor, and
two object detectors to further incorporate high-level saliency.
These four maps are linearly combined to compute the input
saliency maps to our framework.

Fast and Efficient Saliency
Fast and Efficient Saliency (FES) [37] is a model with a
simplified scheme to compute centre-surround color differ-
ences, and achieves near real-time performance while keep-
ing a moderate fixation prediction accuracy. Similarly to most
state-of-the-art methods, FES uses an average fixation map
as a prior distribution to take into account the strong fixation
bias towards the centres of images. As we discussed earlier,
however, an egocentric camera’s field of view does not match
the user’s perspective and such a spatial bias becomes purely
user-dependent. Hence, we replace the centre bias with a uni-
form distribution and use bias-free saliency maps. In our own

C++ implementation, the model runs at about 100 frames per
second.

Boolean Map Saliency
BMS (Boolean Map Saliency) [42] is one of the top-ranked
methods in the MIT saliency benchmark [11]. The model is
designed based on a Gestalt principle of figure-ground seg-
mentation and finds regions with closed contours in the fea-
ture space as salient regions. Using the author-provided C++
implementation, the model also runs at 100 frames per sec-
ond. As in the case of FES, we use bias-free maps from the
BMS model.

Face Detection
Human faces are known to be one of the most prominent ob-
jects that attract human attention, and face detection results
can be used as a high-level saliency map [12]. In our sys-
tem, we employed one of the state-of-the-art face detection
methods by Li et al. [27]. Using the implementation of the
ccv library with default parameters1, the model can run at 33
frames per second.

Pedestrian Detection
Similarly to the face detection, human or pedestrian detection
can be another prominent saliency indicator, especially when
their faces cannot be observed clearly. We also used one of
the state-of-the-art pedestrian detectors [4, 5] implemented in
the ccv library, and the model runs at 17 frames per second.

EVALUATION
We performed evaluations as to the effectiveness of the pro-
posed approach to (1) achieve a practically useful gaze es-
timation accuracy in the fully automatic self-calibration set-
ting and (2) maintain gaze estimation accuracy in the self-
calibration setting with initial calibration.

Performance with Video-Based Eye Tracker
Figure 12 summarises the corresponding estimation error for
the video-based eye tracker. In addition to two variants of
our self-calibration approach with and without initial calibra-
tion, the figure shows a baseline result only with the initial
calibration. For the recording sessions, the self-calibration
methods took each of the whole recording session as an input
calibration sequence. For validation sessions, the previous
recording session were used as input. Our method used pupil
1http://libccv.org/
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(a) Recording sessions (b) Validation sessions

Figure 12: Gaze estimation performance in the video-based
setting. Error bars correspond to 95% confidence intervals.

(a) Recording sessions (b) Validation sessions

Figure 13: Gaze estimation performance in the EOG-based
setting.

detection results from the Pupil software and the same seven-
dimensional polynomial pupil position feature as the baseline
method.

Compared to the initial calibration result that shows a sig-
nificant calibration drift, our proposed self-calibration meth-
ods show nearly consistent performance. In particular, in
the last validation session (V2), the fully automatic calibra-
tion approach without initial calibration achieved nearly the
same performance (M=9.9°, SD=4.1°) as the baseline method
(M=10.1°, SD=9.2°). This error can be further decreased
by incorporating the initial calibration data, in which case
the mean estimation error goes down to around 6.0° during
the recording sessions (R1: M=5.8°, SD=2.7°, R2: M=6.1°,
SD=4.2°). Obviously, the proposed self-calibration method
can only improve calibration drift for those cases where cali-
bration drift actually happened. For the corresponding sub-
set of 12 participants who showed calibration drift in ses-
sion V2 (see Figure 7), our joint calibration method (M=8.0°,
SD=3.5°) performed significantly better than the initial cali-
bration result (M=14.9°, SD=9.2°); t(12) = 2.50, p = .03 by
paired t-test.

Performance With EOG-Based Eye Tracker

(a) (b)

Figure 14: Relationship between saliency performances and
self-calibration results. (a) ROCs of saliency maps before and
after the aggregation step. (b) Self calibration accuracy with
respect to AUC values.

Figure 13 summarises the corresponding estimation error
comparison for the EOG-based eye tracker. While the im-
provement made by our method is smaller than for the video-
based tracker, initial calibration is also helpful in this case.
As discussed before, the estimation error increases during
recording sessions. Through a paired t-test to compare esti-
mation errors in session R2, our joint self-calibration method
(M=15.2°, SD=3.2°) showed a significant performance im-
provement from the initial calibration method (M=17.7°,
SD=5.7°); t(20) = 2.73, p = .01.

Performance of Saliency Models
Intuitively, gaze estimation accuracy depends on how well
saliency models can predict fixation positions. Figure 14a
shows receiver operating characteristics (ROCs) of saliency
maps before and after the aggregation step. The vertical axis
corresponds to the true positive rate, i.e. the rate of fixated
pixels in saliency maps, while the horizontal axis corresponds
to the false positive rate, i.e. the rate of non-fixated pixels.
Hence, the area under the ROC curves (AUC) becomes larger
if the maps have sharp peaks around ground-truth fixation po-
sitions. The blue curve indicates the performance of the orig-
inal saliency maps, and the green and red curves correspond
to the maps after the aggregation step using EOG-based and
video-based input signals, respectively. It can be seen that the
aggregation step increases on the original AUC value (0.69)
in both cases (0.81 and 0.73 in video- and EOG-based set-
tings, respectively). However, these are still significantly
lower than the AUC values reported in prior work [36] (0.82
and 0.93 before and after the aggregation) in a stationary set-
ting, and illustrate the core difficulty of the mobile setting.

These saliency performance metrics are directly related to the
final performance of the self-calibrated gaze estimator. Fig-
ure 14b shows the relationship between AUC values after the
aggregation step at the R2 session (horizontal axis) and fi-
nal estimation accuracy of the video-based fully-automatic
method at the V2 session (vertical axis). The overlaid line
is a linear model relating two values with 95% confidence in-
tervals. The two variables are strongly correlated, r(20) =
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Figure 15: Self-calibration performance using different
saliency models: two bottom-up models (BMS, FES), two
object detection models (Face, Pedestrian) and their combi-
nation.

(a) (b)

Figure 16: Detailed analysis of calibration performance. (a)
Comparison between different mapping approaches. (b) Cal-
ibration accuracy with respect to the amount of input data.

−0.83, p < 0.01, clearly indicating the relationship between
saliency and calibration performance.

While in this work we used a combination of four differ-
ent saliency models, each saliency model contributes differ-
ently to the self-calibration performance. Figure 15 compares
the estimation accuracy of the video-based fully-automatic
method using different saliency models. While the face detec-
tion model is known to be very effective in stationary settings,
in our setting it showed the worst performance (M=17.2°,
SD=7.2° across two validation sessions). The pedestrian de-
tection model showed a moderate performance (M=11.1°,
SD=5.0°), and bottom-up models in general achieved bet-
ter performance (FES: M=9.6°, SD=4.0°, BMS: M=9.2°,
SD=3.2°) than object detection models. Although it is not
statistically significant, the combination model achieved the
best performance among them (M=8.9°, SD=3.4°).

Effect of the Proposed Robust Fitting
The low accuracy of saliency maps shown in Figure 14a ex-
plains why our proposed robust fitting approach is required.

Figure 16a further compares the proposed robust mapping
method with a direct mapping method for the video-based
setting. The direct mapping refers to the most straightforward
approach, i.e., applying a polynomial regression function be-
tween salient points and pupil positions. Robust mapping
refers to the same fully automatic calibration method shown
in Figure 12, and the initial calibration result is also shown
as a reference. At session V2, the direct mapping method
achieved a mean error of 16.4° (SD=3.6°). The proposed ro-
bust mapping method (M=9.9°, SD=4.1°) significantly im-
proved the estimation accuracy; t(20) = 6.13, p < .01 by
paired t-test.

Effect of the Amount of Input Data
The aggregation step generally improves for larger amounts
of input data. However, since it assumes a one-to-one corre-
spondence between input feature and output gaze position, it
can suffer from sensor drift. Hence, there can be a fundamen-
tal trade-off between aggregation performance and input data
amount. Figure 16b shows estimation performance with re-
spect to the amount of input to the self-calibration framework.
Mean errors of fully-automatic calibration across two vali-
dation sessions are shown using different amounts of input
data (the last 5, 10, and 15 minutes of the previous recording
session) for video-based and EOG-based settings. Although
the difference is not statistically significant, the largest input
size results in the best performance in the video-based setting
(M=9.0°, SD=2.4°). In contrast, in the EOG-based setting
where the baseline drift is a critical problem, more data is not
always helpful, and the 10-minute setting achieved the best
performance (M=15.4°, SD=4.5°).

DISCUSSION
Analyses on our new dataset confirmed what was probably
assumed but never shown or quantified before: Even for the
relatively short recordings as in our data collection, calibra-
tion drift can be severe and considerably reduce gaze esti-
mation accuracy for both eye tracker types. Calibration drift
therefore poses an important challenge for gaze recordings
in mobile daily-life settings, and can be expected to be even
more severe for long-term recordings.

To address this problem, we proposed a robust method to au-
tomatically self-calibrate head-mounted eye trackers. Results
from our evaluations suggest that our method is effective in
reducing drift in a calibrated eye tracker. Given sufficient
data, the method can also achieve competitive gaze estima-
tion accuracy compared to a state-of-the-art initial calibration
method but without the need for any manual eye tracker cali-
bration.

Our analyses revealed that in mobile settings, the gaze estima-
tion accuracy of head-mounted eye trackers cannot stay true
to the best case performance reported by device manufactur-
ers obtained under controlled conditions. The mean estima-
tion error of the best case (joint self-calibration together with
initial calibration) was about 6.0° during recording sessions.
In the physical space, this error corresponds to, e.g., 11cm at
1m distance from the user and is already good enough to iden-
tify objects of interest in the scene. Although traditional gaze
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interaction techniques often assume accuracy high enough to
interact with objects inside screen spaces, this result suggests
that we need to change our way of thinking about technical re-
quirements for pervasive real-world gaze interaction. In light
of this disparity, in the future it will be important to take into
account both calibration drift and low gaze estimation accu-
racy and to design applications that do not require high accu-
racy.

Considering that the method performs nearly the same only
with the fastest saliency model, it already has a good potential
for practical use. The joint self-calibration approach can sig-
nificantly reduce users’ effort to maintain high gaze estima-
tion accuracy, and together with low-cost devices, it makes it
easier to integrate eye tracking capabilities into smart glasses.
The fully automatic self-calibration approach is more benefi-
cial to, e.g., elderly and child care applications, where more
natural and unobtrusive eye tracking technology is required.

Since our method aggregates saliency maps to improve pre-
diction accuracy, long-term recording can further improve
the self-calibration performance as indicated in Figure 16b.
However, if the amount of calibration drift is significant, fit-
ting a single mapping function to the whole recording session
cannot result in good performance. Instead, it would be bet-
ter to split the recording into small segments and repeat the
self-calibration process. Studying the self-calibration perfor-
mance during longer recordings would be an important sub-
ject for future work.

Limitations and Future Work
The biggest bottleneck of the proposed self-calibration ap-
proach is fixation prediction accuracy of the saliency model.
Given the correlation between saliency performance and final
estimation accuracy, there is great potential that performance
can be further improved by enhancing the baseline saliency
performance. Egocentric saliency prediction is a relatively
new topic in the field of computer vision, and there is a huge
potential for future research investigation.

Current object detection-based models perform relatively
poorly in egocentric videos, for which there may be two
possible explanations. First, even for state-of-the-art com-
puter vision algorithms, we cannot expect perfect accuracy of
face and pedestrian detection in egocentric videos. Second,
compared to human-edited images and videos used in prior
studies, videos captured by egocentric cameras often contain
meaningless scenes without any salient objects. In this sense,
the performance of object detection-based models is expected
to be less significant even with a perfect detection algorithm.
It will be also important to conduct more fundamental study
on gaze behaviour during daily-life situations.

CONCLUSION
We introduced a method for self-calibrating head-mounted
eye trackers and demonstrated the effectiveness of our ap-
proach for both video- and EOG-based eye trackers with
and without initial calibration. We further presented a 20-
participant dataset containing synchronised egocentric videos

as well as gaze data. We used the dataset to characterise cal-
ibration error during mobile daily-life recordings and quan-
titatively compare the proposed self-calibration method with
an initial calibration method. To the best of our knowledge,
this is the first attempt to show the real-world applicability
of a saliency-based calibration approach for video-based and
EOG-based head-mounted eye trackers. These results are
promising and underline the significant potential of the self-
calibration approach to enable novel gaze-based applications
not yet feasible in unconstrained daily-life settings.
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