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ABSTRACT
Inferring human intentions is a core challenge in human-AI collab-
oration but while Bayesian methods struggle with complex visual
input, deep neural network (DNN) basedmethods do not provide un-
certainty quantifications. In this work we combine both approaches
for the first time and show that the predicted next action probabili-
ties contain information that can be used to infer the underlying
user intention. We propose a two-step approach to human inten-
tion prediction: While a DNN predicts the probabilities of the next
action, MCMC-based Bayesian inference is used to infer the un-
derlying intention from these predictions. This approach not only
allows for the independent design of the DNN architecture but
also the subsequently fast, design-independent inference of human
intentions. We evaluate our method using a series of experiments
on the Watch-And-Help (WAH) and a keyboard and mouse inter-
action dataset. Our results show that our approach can accurately
predict human intentions from observed actions and the implicit
information contained in next action probabilities. Furthermore,
we show that our approach can predict the correct intention even
if only a few actions have been observed.
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1 INTRODUCTION
A hallmark of human cognition is Theory of Mind (ToM), i.e. our
ability to attribute mental states to others, such as thoughts, beliefs,
or feelings. A critical requirement is the ability to understand oth-
ers’ intentions, i.e. their commitment to carrying out a particular
action in the future [18]. This understanding enables us to antici-
pate others’ actions [12] and is thus essential for us to engage in
social communication and to interact naturally, effortlessly, and
seamlessly with each other. In contrast, despite its importance for
the research on human-computer interaction (HCI) and human-AI
collaboration, current AI agents still lack the ability of ToM and fail
to understand users’ attention, predict their intentions, and antic-
ipate their needs and actions. This limits the agents to operating
after users’ actions, thereby drastically restricting the naturalness,
efficiency, and user experience of current interactions.

To allow AI agents to have the ability to predict the user’s in-
tention, previous works focused on predicting intentions based on
Bayesian methods [1, 2, 27] and Deep Neural Networks (DNNs)
[6, 10]. Bayesian-based methods can provide the uncertainty of the
prediction but have the disadvantages of handling complex input
data form (e.g. images) and gearing the probabilistic models for
the domain they are trained in. DNN-based methods, on the other
hand, are excellent at handling complex input data forms but cannot
easily quantify the epistemic uncertainty in the prediction. A model
that combines DNN-based and Bayesian-based methods together

Figure 1: Overview of our proposedmethod to predict human
intentions. An agent observes the human actions and tries to
infer the human’s intention. Deep Neural Networks (DNNs)
together with a Bayesian model infers the human intention.

could have the advantages of both. This can benefit practical ap-
plications in two aspects. First, a collaborative AI agent needs to
operate in the real world and it needs to deal with data with high
(visual) complexity. Deploying DNNs can easily adapt to complex
input. Second, the uncertainty quantification about the prediction
of intention can help better provide decisions on future actions and
reduce the risk of a potential wrong prediction.

In this work, we propose a novel two-step procedure to infer hu-
man intentions from sequences of actions (Figure 1). Our approach
combines DNNs to obtain the probabilities of the next action with
MCMC-based Bayesian inference for inferring intentions. Specifi-
cally, given action data from 𝑁 different intention, we train 𝑁 DNN
models for next action prediction. At test time, one action sequence
data is fed to all 𝑁 models to obtain the action probabilities, the
action sequence represents the true intention. The output from
𝑁 DNNs represents the probabilities assuming 𝑁 intentions are
applied. Next, we use Markov Chain Monte Carlo (MCMC) sam-
pling to train a Bayesian model with all action probabilities from
all DNNs to infer the intentions. Our two-step method decouples
the next action prediction (DNNs) and actual intention prediction
(Bayesian model). We do not have any requirements on the DNN
input format and network architecture. They can be modified and
optimised according to different tasks. The Bayesian model is in-
dependent of the DNNs, it only takes the action probabilities from
DNNs and predicts the intentions with uncertainties. We demon-
strate the effectiveness of our method through experiments on two
datasets: Watch-And-Help (WAH) [19] and keyboard and mouse
interaction dataset [36]. Our results show that our method can
correctly predict the intentions of users. We further evaluate the
performance of our method with 10% to 100% of observed actions in
one action sequence on both datasets. The results show that using
20% of actions in a sequence, is often sufficient for the true intention
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to have clearly higher posterior probability than all other inten-
tions, although with substantial uncertainty. This demonstrates
that our method can infer the users’ intention already in an early
stage where only a few actions have been observed.

The main contribution of this work is the two-step method to
infer human intention. We use action probabilities of next action
prediction from DNNs with a Bayesian model to infer intentions. To
our best knowledge, we are the first ones to propose the joint use of
DNNs and Bayesian models to decouple the next action prediction
and intention prediction. Our method has three advantages. First,
the DNNs and the Bayesian inference are decoupled. The inference
of intention does not depend on the DNN architecture. One can
optimise the DNN architecture for classifying the next action sepa-
rately. Second, training the Bayesian model requires less time and
Bayesian inference provides a fast prediction on intention. Third,
our method can predict the intention correctly and efficiently when
using a few observed actions in the series of actions.

2 RELATEDWORK
Human-AI collaboration has attracted increasing interest recently.
Several works focused on developing computational agents for
collaboration in virtual environments [14, 20, 31]. The virtual en-
vironments possess near-realistic scenes and objects and support
different types of actions. The importance of intention prediction
in collaboration has been shown in virtual environments [19] and
real-life scenarios [34]. Correctly predicted human intentions lead
to more effective collaborations in robotic shared autonomy [13],
Human-Robot handover [33] and cooperative assembly [17]. Sev-
eral prior works have focused on action anticipation based on
videos, i.e., the task of predicting future actions based on observed
behaviour in the past [8, 9, 21]. Different types of models have been
used , e.g. two-stream CNN [9], LSTM [8], video transformer [11],
or graph neural networks [35]. In [4], the authors further used label
smoothing technique to improve the work [8]. Other works have
also used goals in anticipating future actions [7, 23].

In [12], the intention was defined as the intended ingredients for
a sandwich. SVMs were used to predict the intention from human
gaze data. SVM was also used in intention prediction during human
interactions [3]. Other approaches include MDP [15], probabilistic
graphical model [29], k-nearest neighbour (kNN) [22]. In [36], the
authors investigated the task of predicting user intents from mouse
and keyboard input as well as gaze behaviour. In another line of
work, gaze behaviour was also identified as a rich source of informa-
tion for predicting users’ search intents [24–26] and even visually
reconstructing it [30]. Perhaps the works in [16, 28] are the most
similar to ours. In [28], a Bayesian model to infer intentions from
ontic actions and gaze action. The ontic actions are the actions that
change the state of the world and the gaze actions are the regions
where an agent is looking at with regard to the ontic action. The
work in [16] further introduced a deceptive component into the
Bayesian model for the scenario where the human might perform
ambiguous actions on purpose. Although Bayesian models were
used for intention prediction, the actions were not predicted by
neural networks. Rather they were pre-processed and then used in
the Bayesian models.

3 METHOD
For each of the 𝑁 possible intentions, we train a separate DNN on
data where the ground-truth intention is known. The task of the
DNNs is to predict the next action from all previous actions. Since
our method works with arbitrary DNN architectures that perform
this prediction task, we are not focusing on the specific architecture
of the DNN here. It is important, however, that each DNN has a
final Softmax (or equivalent) layer to obtain the predicted next-
action probabilities. All action probabilities are then used to train a
Bayesian model to predict the intention from the set of predicted
next-action probabilities (see below for details). At test time, the
data of each intention is forwarded to all DNNs to obtain 𝑁 next-
action probabilities representing 𝑁 intentions. We refer the action
sequence forwarded to the DNNs with the known intention label
as the true intention. The 𝑁 DNNs are trained with 𝑁 intentions
and we interpret each DNN as an assumed intention, i.e. given one
action sequence, the DNNs do not know the true intention, the 𝑖th
DNN assumes it is from the 𝑖th intention. The Bayesian model then
uses all action probabilities jointly to infer the posterior distribution
over the 𝑁 assumed intention. Specifically, the Bayesian only uses
the action probabilities from one action sequence to infer user
intention. All DNNs can be trained separately as they do not need
to share weights for our procedure to work.

Formally, an intention I consists of a series of actions,

I𝑖 𝑗 = [𝑎0, ..., 𝑎𝐿], 0 < 𝑖 < 𝑁, 0 < 𝑗 < 𝑀, 0 < 𝑘 < 𝐿, (1)

where 𝑎 is action,𝑀 is the number of action series belonging to 𝑖𝑡ℎ
intention and 𝐿 is the total number of actions in I𝑖 𝑗 . 𝐼𝑖 𝑗 represents
an action series instance in the 𝑖th intention. In the training of 𝑖th
DNN, we use all instances in 𝐼𝑖 as training data. The input of for the
DNN are the I𝑖 𝑗 , whereas the ground-truth next action 𝑦𝑖 = 𝑎𝑘+1
constitutes the target variable. The loss function is then

L = 𝑓 (𝑦,𝑦), (2)

where 𝑦 is the DNN prediction and 𝑓 (·) is a cross entropy loss.
After all networks are trained, each intention data is passed to all 𝑁
networks and obtains 𝑁 Softmax outputs. The 𝑖𝑡ℎ Softmax outputs
produced by the 𝑖𝑡ℎ DNN represent the action probability assuming
𝑖𝑡ℎ intention is applied. To infer the intention of humans based
on the series of actions and their DNN predictions serving as a
surrogate likelihood, we set up the following Bayesian model:

𝑎𝑘 ∼ categorical(𝜃𝑘 ),∀𝑘 = 1, ..., 𝐿,

𝜃𝑘𝑚 =

𝑁∑︁
𝑖=1

𝑃 (𝑎𝑘𝑚 |I𝑖 )𝑃 (I = I𝑖 ),∀𝑚 = 1, ..., 𝑀,

𝑃 (I) ∼ Dirichlet(𝛼),

where 𝑃 (I = I𝑖 ) is the 𝑖𝑡ℎ element of the intention probability 𝑃 (I)
to be inferred by the model, and 𝛼 ∈ R𝑁+ is the concentration vector
of the Dirichlet prior on 𝑃 (I), which we set to 𝛼 = 1 to obtain
an uninformative prior. The action probabilities 𝑃 (𝑎𝑘𝑚 |I𝑖 ) of the
𝑚th possible action to occur at the 𝑘th position in the sequence are
obtained from the output of DNNs. To predict the intention 𝑃 (I),
we use the probabilistic programming language Stan [5], which
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employs a state-of-the-art Markov-chain Monte-Carlo (MCMC)
sampler to 𝑃 (I).

4 EXPERIMENT
4.1 Datasets
4.1.1 Watch-And-Help Dataset. WAH is a dataset for social intelli-
gence and human-AI collaboration [19]. In the dataset, an AI agent
Bob helps another human-like agent Alice perform household activ-
ities. The world is a 3D virtual environment. There are two stages of
collaboration, i.e., theWatch stage and the Help stage. In theWatch
stage, Bob observes Alice demonstrating an activity and Bob helps
Alice with the same activity in the Help stage. In this work we only
consider theWatch state given that we are interested in inferring
the intentions of Alice. We understand the activities are defined
by a set of sub-goals represented by predicates. Both agents can
perform different actions to accomplish their goals. An activity is
accomplished once the states of all sub-goal predicates are reached.
In total, there are five types of activities with each activity having
two to eight sub-goals. The dataset has one training and two test
sets. To evaluate our method we only need information on the ac-
tivity and actions and thus leave the sub-goals aside. Furthermore,
to keep the activity category consistent, we focus only on those
types of activities that are present in the training set and test set
1. We treat the activity as the intention and predict the intentions
from the sequence of actions. Since we use the DNN to predict the
next action in an action sequence, we modify the original action
sequences for the use of next action prediction. For an action se-
quence [𝑎0, ..., 𝑎𝐿], when a new action is observed, we create a new
action sequence. The dataset does not have action sequences from
different users, to evaluate from a user perspective, we create 92
artificial users and randomly assign action sequences to the users.

4.1.2 Keyboard and Mouse Interaction Dataset. To complement the
household activities performed in the virtual environment in the
WAHdataset, we also evaluated ourmethod on keyboard andmouse
interaction dataset introduced in [36]. 16 participants were asked
to format text according to several formatting rules (the interaction
intentions). The evaluation task on this dataset was to predict these
interaction intentions from mouse and keyboard input. The text
consisted of titles, subtitles and paragraphs and a rule contained
instructions on how to format it using the mouse and keyboard (e.g.
"make the title bold"). Participants could perform seven different
actions for formatting the text. The dataset contains data from two
types of formatting tasks: First, participants were asked to perform
formatting according to seven predefined formatting rules. Each
rule was repeated five times. Second, each participant was asked to
create a custom rule themselves and to format the text according to
this rule. We only used data from the first part of the dataset for our
experiment since there is only one intention for each participant in
the second part. We used the data from participants one to 11 for
training and the data from participants 12 to 16 for testing.

4.2 Experimental Settings
We performed two experiments on the WAH dataset and the key-
board and mouse interaction dataset. We first evaluated our method
on inferring users’ intentions using the full action sequences. In

the second experiment, we used 10% to 90% of the actions in an
action sequence with a 10% step to infer the intentions. Since the
WAH dataset is created in a virtual environment and the action
sequences do not belong to any user, we created virtual users by
randomly grouping the data in test set 1 and test set 2. As a result,
test set 1 had 92 artificial users, each user had one action sequence
in put fridge, two action sequences in put dishwasher, and three
action sequences in read book. Test set 2 had nine users, each user
had one action sequence in put fridge, five action sequences in put
dishwasher, and five action sequences in read book. We show the
results on test set 1 in section 5, but we conducted experiments
on both test set 1 and test set 2. We observed similar outcomes,
we only show results on test set 1 due to the limit of space. The
architecture of our DNN model is based on the one in [20].

To train the DNNs on the WAH dataset, we used 2,000 epochs, a
batch size of 32 and a learning rate of 3𝑒−4. For the keyboard and
mouse interaction dataset, we trained for 100 epochs, the batch size
was eight, and the learning rate was 1𝑒−4. To train the Bayesian
model we used the same training strategy for both datasets. For
each action sequence, we performed Bayesian inference via four
MCMC chains, each with 2,000 iterations of which the first 1,000
were discarded as warmup. All Bayesian models converged well
according to standard convergence criteria [32].

5 RESULTS
5.1 User Intention Prediction
Figure 2 shows the result of user intention prediction on test set 1
of the WAH dataset. We report the posterior mean and 90% credible
intervals (CIs) of the probabilities of all assumed intentions. The top,
middle and bottom plot shows the results when the true intention is
put fridge, put dishwasher and read book. For the true intention put
fridge, for most users our method can predict the correct intention,
meaning that the assumed intention with the highest posterior
mean probability is the same as the true intention. In a few cases, the
posterior mean probability of put fridge is close to put dishwasher
or read book. We can see that the posterior mean of put fridge and
put dishwasher for user 49 is 0.43 and 0.39. When the true intention
is read book, our method can also predict the correct intentions of
most users with a few exceptions,i.e. user 13, 23, and 33. For user
13, the posterior mean of read book 0.43, only 0.02 higher than
put fridge. For user 23 and 33, the posterior mean of put fridge is
slightly higher than read book. For the true intention put dishwasher,
although the posterior mean of put dishwasher are the highest in
most users predictions, the difference between put dishwasher and
the other two assumed intentions are smaller compared to the cases
in true intention put fridge and read book. For user 6, 19, 20, 44, 49,
51, 53, the difference between the posterior mean of put dishwasher
and the posterior mean of read book are around 0.1. For user 15, 27,
30, 46, 50, 56, 65, 71, and 84, the differences are below 0.07. Overall,
our model can predict the correct true intention put fridge, however
the prediction for user 49 is rather uncertain. For true intention read
book, predictions for most users are correct but more predictions
are more uncertain. The model can predict users’ true intention put
fridge and read book better than put dishwasher.

Figure 3 shows the posterior mean and 90% CIs of the predicted
intentions in the keyboard and mouse interaction dataset. The
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Figure 2: Result of intention prediction of users on test set 1 in WAH dataset.

Figure 3: Result of intention prediction of users in keyboard and mouse interaction dataset.

prediction on all user data on all rules are correct in terms of the
highest posterior mean of the assumed intention being the true
intention. For user 1, 2,3 and 5, the differences of the posterior mean
between the correctly predicted intention and the rest intentions
in all true intentions are quite large. For user 4, the posterior of
the correct intention for true intention rule 4 and rule 7 are more

uncertain than the other true intentions. For true intention rule 4,
the posterior mean of rule 4 is 0.41 while the posterior mean of rule
1 is 0.27. For true intention rule 7, the posterior mean probabilities
of rule 7 and rule 6 are 0.45 and 0.22 respectively.



Inferring Human Intentions

Figure 4: Posterior mean probabilities and CI bounds when different percentages of observed actions in an action sequence are
used for inference. The results on test set 1 in WAH dataset are shown.

Figure 5: Posterior mean probabilities and CI bounds when different percentages of observed actions in an action sequence are
used for inference. The results in keyboard and mouse interaction dataset are shown.

5.2 Different Lengths of Observed Actions in
Action Sequences

Figure 4 shows the results when different percentages of observed
actions in one action sequence are used for inferring intention

on test set 1 in WAH dataset. The percentage of the action in a
sequence is varied from 10% to 100% in steps of 10%. For instance,
50%, we extract the first 50% of the actions in the sequence and
use it to infer the intention. We plot the average posterior mean
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probabilities and 90% CIs, i.e. at each percentage of observed actions
in one sequence, the values of posterior mean and CI bounds are the
average values from all users. For all true intentions, the posterior
mean probabilities of the correct intentions are already relatively
higher than the other assumed intentions when 20% of action in
a sequence has been observed. The posterior mean probabilities
increase with the increase of observed actions in action sequences.
The CI bounds decrease as the percentage of observed actions
increases. This shows that the more actions have been observed in
one action sequence, the more certain the Bayesian model is about
its intention predictions.

When the true intention is put dishwasher, the predictions of
Bayesian models are more uncertain than the other two true inten-
tions. This can be observedwhen predicting user intention using full
action sequence (Figure 2) and partially observed action sequence
(Figure 4). We interpret that it is due to the noisier distribution of
the actions in action sequences and the predictions of the DNNs.
That is, the actions in the action sequences are not representative
enough. By representative actions we mean the actions from which
the intention can be easily interpreted. For instance, open fridge is
a representative action for the intention put fridge.

Figure 5 shows the result on the keyboard and mouse interaction
dataset. We show the average posterior mean probabilities and the
90% CIs of all seven intentions when different percentages of actions
in one action sequence are used for inference. For all true intentions,
the posterior mean probabilities of the correct intentions increase
with more actions having been observed in the action sequences.
At 10%, the assumed intention with the highest posterior mean
probability is the same as the true intention for all rules but the
differences are small. The predictions are still quite uncertain. At
20%, the differences in true intention rule 2, rule 5, and rule 6 become
larger, but the CI bounds remain at wide ranges. For true intentions
rule 5 and rule 6, the probabilities of correct intentions are close to
0.5, however, the CIs have not decreased a lot. At 50%, the CIs of
the correct intention already no longer overlap with the CIs of the
other intentions.

6 DISCUSSION
In the evaluation of WAH dataset, we manually created artificial
users by assigning action sequences to users and most intentions of
users were inferred correctly. In the keyboard and mouse interac-
tion dataset, all predictions of all users for all true intentions were
correct. We used one action sequence from one user to perform
Bayesian inference. This shows the Bayesian model is efficient for
inferring intention in terms of the number of observations of action
sequence. It does not have to see multiple action sequences to infer
the correct intention, only seeing one action sequence is adequate.

We were also interested in how the Bayesian model performs
when fewer actions have been observed in the action sequences.
An intuition is that the model is more confident about the inferred
intention when more actions have been observed. This is confirmed
by experiments in two aspects. First, the posterior mean probabili-
ties increase when more actions are observed. Second, the ranges
of CI bounds become smaller meaning the Bayesian model is more
certain about its predictions. Additionally, the Bayesian model can
predict the true intentions correctly even at an early stage in the

action sequence. Being able to predict human/agent intention in an
early stage can benefit agent-agent and human-agent interaction.
For instance, in theWAH scenario, an agent can help the other agent
finish a task by completing other actions in the same task. In the sce-
nario of keyboard and mouse interaction, the computer/agent can
optimise the user interface or give suggestions while the human is
formatting the text. It is necessary that the agent has enough time to
plan and deploy collaboration and interaction. To be able to predict
intentions when only partial actions in an action sequence allows
the agent to have sufficient time for planning. It is worth noting
that the uncertainties of the predicted intention in early stages are
relatively high and this should be taken into consideration when
designing the interaction with a human.

When the number of intentions scales up, we can train the DNN
in a multi-task setting, i.e. each DNN representing an intention
is jointly trained and they do not share weights. This is equiva-
lent to training separate DNNs but saves the time of training. As
for the Bayesian inference, more intentions would not affect the
computational time significantly.

7 CONCLUSION
In this work we proposed a two-step procedure to infer human
intentions from a series of actions based on DNNs and Bayesian
inference. First we trained DNNs to obtain the probabilities of
predicted next action in a sequence. Then we used MCMC-based
Bayesian inference to infer the human intention from the predicted
next-action probabilities. We performed experiments on the WAH
and keyboard and mouse interaction datasets to validate our ap-
proach. The results show that we can accurately infer the intentions
even when only one action sequence from one user is available
at inference time. This suggests that the implicit information con-
tained in the next action probabilities generated by DNNs can be
used to infer the intention using a Bayesian model. In addition, we
demonstrated that our approach still provides correct predictions
even if only a few actions have been observed.
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