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Figure 1: We propose GazeCast, a novel system that leverages users’ personal hand-held mobile devices to enable gaze-based
interaction with surrounding displays using Pursuits (A). In a user study, we evaluate GazeCast by experimenting with three
tracking setups where participants’ gaze was tracked: using a web camera (B), GazeCast with a mobile device attached to a stand
(C), and GazeCast with a mobile device held by the participants (D). The illustration is adapted from GTmoPass by Khamis et
al. [Khamis et al. 2017a].

ABSTRACT
Gaze is promising for natural and spontaneous interaction with pub-
lic displays, but current gaze-enabled displays require movement-
hindering stationary eye trackers or cumbersome head-mounted
eye trackers. We propose and evaluate GazeCast – a novel system
that leverages users’ handheld mobile devices to allow gaze-based
interaction with surrounding displays. In a user study (𝑁 = 20),
we compared GazeCast to a standard webcam for gaze-based inter-
action using Pursuits. We found that while selection using Gaze-
Cast requires more time and physical demand, participants value
GazeCast’s high accuracy and flexible positioning. We conclude
by discussing how mobile computing can facilitate the adoption of
gaze interaction with pervasive displays.
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1 INTRODUCTION
Gaze-based interaction is deemed particularly promising for public
displays. Interacting using gaze is fast [Sibert and Jacob 2000] pos-
sible from a distance, hence offering users an attractive alternative
to touch interaction that is also suitable for unreachable displays
(e.g., displays behind glass windows [Davies et al. 2014]). So far,
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gaze interaction has been enabled for public displays by either aug-
menting the display using remote eye trackers and webcams or
requiring the user to wear a head-mounted eye tracker [Khamis
et al. 2016; Lander et al. 2015a]. While public displays require users
to interact from different positions and distances to the display
[Müller et al. 2012], stationary eye trackers have a limited range.
This means that for users to interact with public displays using gaze,
they need to position themselves in the display’s “sweet spot” [Alt
et al. 2015]. While head-mounted eye trackers allow for freedom
of movement and interaction from a distance [Lander et al. 2015a],
they require person-specific calibration and gaze mapping to each
display. Although head-mounted trackers have recently become
affordable [Kassner et al. 2014] and are envisioned to be integrated
into daily Eyewear [Bulling and Kunze 2016], they are still not in
wide-spread use and require augmentation of each user [Lander
et al. 2015a]. At the same time, off-the-the-shelf mobile phones
allow for accurate gaze estimation, which resulted in many mobile
apps in which gaze outperforms touch [Khamis et al. 2022; Liu et al.
2015; Zhang et al. 2017a]. In this paper, we introduce GazeCast – a
novel system that leverages users’ handheld devices for gaze-based
interaction on public displays. GazeCast uses the smartphone’s
front-facing camera to cast users’ gaze onto the display. As such,
GazeCast does not require special-purpose eye tracking equipment,
does not restrict the user’s positioning, can support calibration-
free interaction as demonstrated in our study, and can be easily
extended to support multiple users. Furthermore, collecting gaze
data through public displays has privacy implications due to the
sheer amount of sensitive information inferred from eye move-
ments [Bozkir et al. 2021, 2020; David-John et al. 2022], GazeCast
gives more control to the user on which gaze data is transferred to
the display. In our implementation, we transfer the gaze estimates
to the display for processing, but the concept allows gaze data to
be processed locally on the user’s phone.

We present the results of a user study in which 20 participants
provided gaze input on a situated display using Pursuits [Vidal et al.
2013]. To evaluate GazeCast, we experimented with three tracking
setups: participants’ gaze was tracked using 1) a webcam (baseline),
2) GazeCast with the smartphone attached to a stand, GazeCast (on a
stand), and 3) GazeCast with the smartphone held by the participant,
GazeCast (handheld). Results show that while selection time and
perceived workload increase with GazeCast, error counts are lower
and subjective feedback indicates users value how GazeCast makes
their task easier and more accurate and has the potential to make
the experience more privacy-preserving. We discuss how mobile
computing facilitates the adoption of gaze interaction on public
displays.

2 RELATEDWORK
We build on prior work on gaze-based interaction on public displays
and gaze-enabled handheld mobile devices.

2.1 Gaze-based Interaction on Public Displays
Researchers have investigated the use of gaze input for public dis-
play applications, such as voting [Khamis et al. 2016], consum-
ing news [Lander et al. 2015b], interacting with medical images
data [Hatscher et al. 2017], gaming [Vidal et al. 2013; Zhang et al.

2013], measuring attention [Alt et al. 2016], and authentication
[Khamis et al. 2017a, 2018c]. A recurring challenge in gaze inter-
action with public displays is that public displays expect users to
interact from different positions and distances to the display [Müller
et al. 2012]. However, current remote eye trackers limit users’ mobil-
ity [San Agustin et al. 2010] and require users to keep their heads in
a confined tracking box about 70 cm away from the screen [Khamis
et al. 2017b]. Approaches to address this included the use of head-
mounted eye trackers [Lander et al. 2015a], which require gaze
mapping to each display and are cumbersome to wear. Another
approach was to use active eye tracking, where the eye tracker phys-
ically moves depending on the user’s position, as done in EyeScout
[Khamis et al. 2017b]. In EyeScout, the eye tracker was mounted on
a conveyor-belt-like rail but only covered a limited area. A second
challenge is that most remote eye trackers are optimized for view-
ing angles that correspond to screens up to 24 inches, which means
that they may not track gaze accurately on larger displays [Rajanna
and Hammond 2018]. A third challenge is that public displays ex-
pect multiple users to interact simultaneously [Memarovic et al.
2014], but most remote eye-tracking setups support one user at a
time. GazeCast works around these challenges as it does not pose
positioning and display size requirements, and multiple users can
connect to the same display using their handheld mobile devices.

2.2 Gaze-enabled Handheld Mobile Devices
Mobile devices are now equipped with high-resolution front-facing
depth cameras and high-performance processors. These advances,
alongside the recent developments in computational gaze estima-
tion, have made eye tracking increasingly available on mobile de-
vices [Khamis et al. 2018a]. This resulted in increased eye-tracking
applications that run directly on smartphones and tablets. A sur-
vey on gaze-enabled handheld mobile devices classifies eye track-
ing applications on mobile devices to: 1) gaze behaviour analysis,
where users’ eye movements are silently tracked for later anal-
ysis, 2) implicit gaze-based interaction where the system reacts
to the users’ natural eye movements, and 3) explicit gaze-based
interaction where the user deliberately moves their eyes to pro-
vide input [Khamis et al. 2018a]. We focus on the last as GazeCast
is an application for explicit gaze-based interaction. Examples of
mobile apps that feature real-time gaze-based interaction include
GazeSpeak [Zhang et al. 2017a], which supports communication
for people with motor disabilities, gaze-based authentication using
GazeTouchPass [Khamis et al. 2022], and many other generic gaze
interaction applications from research [Kong et al. 2021; Lee et al.
2017; Li et al. 2017; Miluzzo et al. 2010] and industry [Access 2019;
SeeSo 2022].

Most relevant to our work are WorldGaze [Mayer et al. 2020]
and GTmoPass [Khamis et al. 2017a]. WorldGaze estimates the
head-pose using the front-facing camera and detects the gazed-
at objects using the rear camera. This was then used to improve
voice assistants e.g., looking at a store and asking “What time
does this close?”. GazeCast is different in that it detects eye gaze
rather than head-pose, and relies on stimuli that are displayed on
nearby displays. GTmoPass detects multimodal gaze and touch
input on mobile devices to authenticate users on public displays.
While GTmoPass only detects gaze gestures and only communicates
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Figure 2: Three trajectories are shown on the screen.
The circular movement is located at the upper left
of the screen; the lower center portion of the screen
is where the zigzag route is situated; the diagonal
trajectory runs from the upper right corner of the
screen to the middle. The white lines are shown for
illustration purposes and were not shown to the
participants.
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Figure 3: Study Screens A) Public display initial screen showing the
different tracking setups, B) Connection status, C) Example trajectory
on the public display with gaze data printed on the mobile device, D)
Selection Screen.

to the display whether the authentication attempt was successful,
GazeCast can detect smooth pursuit eye movements and is not
limited to authentication applications.

3 GAZECAST CONCEPT AND
IMPLEMENTATION

3.1 Concept
The idea behind GazeCast is to use one’s smartphone’s camera as an
eye tracker to interact with public displays. There are different ways
to connect the smartphone to the public display. In our work, a QR
code is shown on the display, which users can scan, directing them
to the web application with instructions allowing them to interact
with the display. We implemented two web applications (server and
client) that can be accessed using different internet browsers e.g.,
Google Chrome. The concept of GazeCast can be extended to allow
more than one user to interact with the same display concurrently
by connecting their devices to the public display and establishing
the connection.

Building on previous work [Khamis et al. 2016; Vidal et al. 2013],
our system uses Pursuits to enable calibration-free gaze-based in-
teraction with public displays. Being a calibration-free interaction
technique, Pursuits is particularly suitable for public displays which
need to be “immediately usable” [Davies et al. 2014]. By adopting
Pursuits, GazeCast allows spontaneous interaction with public dis-
plays eliminating the need for calibration. Pursuits checks for mo-
tion correlation between the user’s eye movements and trajectories
of on-screen moving targets [Esteves et al. 2015; Vidal et al. 2013].
The method’s strength lies in its ability to determine which object
the user is gazing at by studying their eye behaviour without the
need for accurate gaze estimates.

3.2 Implementation
GazeCast has two main components: the web application user in-
terface (Client) and the Server, implemented using Next.js. We used
“socket.io-client” for two-way communication between the client

and the server. The client can access the application via a browser,
such as Google Chrome, and can connect to the application by send-
ing a message to join the connection. The server receives the gaze
data from the client and calculates the correlation every second (30
frames). After detecting the target, it sends the message back to
the client to trigger the following view. The message can be sent
directly to the client by the server or broadcast to all connected
clients. Throughout the application, we continuously log the gaze
data and the moving target’s locations in x-, y- coordinates. Gaze
data was collected using the SeeSo.io SDK [SeeSo 2022]. We used
Pearson’s product-moment correlation coefficient to compute the
correlation between the user’s gaze and the targets’ movement as
done in prior work [Drewes et al. 2018, 2019; Esteves et al. 2015;
Velloso et al. 2017; Vidal et al. 2013]. A target is selected if it has
the highest correlation to the user’s eye movements as long as the
correlation of the smallest of x and y is greater than the threshold
value of 0.8 as suggested by the literature [Esteves et al. 2015]. The
choice of the window size of 1 second (30 samples at a rate of 30
frames per second) is based on prior work [Esteves et al. 2020, 2015]
and pilot testing with two participants.

While in principle, the calculation of the correlation can be done
on the client’s side (i.e., the personal mobile device), we decided
to process the gaze data on the server. This was done to ensure a
fair comparison with the baseline – this way, the data is processed
by the same machine for all experimental conditions. Extending
GazeCast to allow the processing of gaze data on the phone would
have privacy benefits, as we discuss further in Section 6.

4 GAZECAST EVALUATION
4.1 Study Design
To evaluate the performance of the tracking setups for interaction
with public displays, we designed a repeated measures lab study.
The experiment has one independent variable: The tracking setups,
which has three levels: (1) A webcam mounted on a stand (baseline)
(Figure 1B), (2) GazeCast with the mobile device attached to a stand,
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Figure 4: Webcam has the fastest selection time, and the zigzag
trajectory led to a longer selection time in all setups. The error
bars represent the SD. Figure 5: Webcam is more error-prone than GazeCast.

GazeCast (on a stand) (Figure 1C), and (3) GazeCast with the mobile
device held by the participant, GazeCast (handheld) (Figure 1D). We
included two GazeCast conditions to separate the impact of holding
the mobile device from that of the GazeCast concept, as it is known
that users hold phones differently, which impacts tracking accuracy
[Khamis et al. 2018a]. To control the effect of the target trajectory
types, we ensured that each target trajectory was used an equal
number of times per tracking setup per participant. We measured:
1) Selection time, which is the time taken to perform a successful
selection, 2) Error count, counted whenever a participant made a
wrong selection (i.e., selected a brown rather than a pink target),
3) Number of timeouts, defined as the failure to perform either a
correct or a wrong selection within 30 seconds, 4) User perceived
cognitive load using NASA TLX (link), and 5) User preferences.

4.2 Participants and Apparatus
We recruited 20 participants (10 females), with an average age of 27.7
(𝑆𝐷 = 3.96) and an average height of 168.58 cm. Nine participants
wore glasses, and three wore contact lenses during the study. Two
participants had previous experience with eye tracking, but none
had any experience with Pursuits.

For our setup, we used a 32-inch display (1920× 1080𝑝𝑖𝑥𝑒𝑙𝑠) in a
controlled light environment. We used a standard USB web camera
(1080P) for the webcam condition. For GazeCast, we used an iPhone
X running on iOS version 15.3.1 with a front-facing camera with
a 7 MP sensor. Our web application was opened on a Microsoft
Edge browser on an Apple MacBook Air (13", M1, 2020), which
was connected to the display directly. To enable eye tracking on
the mentioned devices, we used SeeSo SDK [SeeSo 2022], an eye-
tracking library that provides real-time gaze data recorded as an
(x,y) position in screen coordinates at 30 frames per second and a
reported accuracy of 1.6°. We added a marker on the floor (60 cm
away from the screen) indicating where the users should stand for
a consistent distance between the participants and tracking setups.

4.3 Task and Procedure
We designed a game, “Follow the pink potato” inspired by Eye-
Vote [Khamis et al. 2016]. In each task, the application displays
three potatoes floating in different trajectories. Participants are
asked to select the target highlighted in pink. Selecting the wrong
target would result in an error. Each displayed target moves at a
different speed in of the three trajectories: circular, zigzag, or diag-
onal [Khamis et al. 2016] (see Figure 2). Each target moves along its
path back and forth until the system detects a selection or the task

exceeds the time limit of 30 seconds [Dwivedi et al. 2017]. Once
the system detects a selection or a timeout, a message is shown
on the screen for seconds telling the user what their selection was,
followed by a new round. Figure 3 shows the different screens for
the study.

For the procedure, when the participants arrived at the lab, we
explained the I am of the study and asked them to fill in the consent
and demographics forms. Participants were asked to perform 6 selec-
tions per input technique using Pursuits. The order of the conditions
was counterbalanced across participants by a Latin square. For each
technique, participants started with one training session (1 selec-
tion) to familiarise themselves with the task and the eye-tracking
device. After each technique, participants rated their experience
through 5-point Likert-scale questions, responded to the NASA-
TLX questionnaire, and open-ended questions assessing the ease
of use, speed, and effort. At the end of the study, participants were
required to answer a final questionnaire to rank the eye-tracking de-
vices based on their preferences and performance. The experiment
took an average of 60 minutes.

5 RESULTS
Our data showed normal distribution using Shapiro-Wilk test. hence
we used one-way repeated measures ANOVA unless stated other-
wise. We reported Greenhouse-Geisser-corrected degrees of free-
dom in cases where Mauchly’s test showed a violation of sphericity.
Bonferroni-correction to account for multiple comparisons was
used when applicable.

5.1 Selection Time
Figure 4 shows the selection time. Our statistical test showed a sig-
nificant effect of each tracking setup on selection time F2,38 = 18.340,
𝑝 < .001. Post-hoc analyses showed significant differences between
webcam (𝑀 = 4024.11, 𝑆𝐷 = 2909.01) and GazeCast (handheld)
(𝑀 = 6627.13, 𝑆𝐷 = 4284.71) and between webcam and GazeCast
(on a stand) (𝑀 = 7137.47, 𝑆𝐷 = 4679.40). As a result, using the
webcam yielded the fastest selection time. However, no significant
differences were found between both GazeCast conditions.

5.2 Error Counts and Timeout
The results revealed a significant effect of each tracking setup on
errors F2,38 = 6.961, 𝑝 = .002. Post-hoc analyses showed significant
differences between webcam (35 errors out of 120 selections) and
GazeCast (handheld) (18 errors out of 120) at 𝑝 = .039, and between

https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf
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webcam and GazeCast (on a stand) (15 errors out of 120) at 𝑝 = .006.
Reflecting on the trajectories, the zigzag trajectory was the most
error prune, then the circular and the diagonal trajectories. For the
setups, we found that the webcam setup is the most error-pruned,
then GazeCast (on a stand) and finally, GazeCast (handheld) (see
Figure 5). For timeout, out of all trials by all participants (360 trials),
six timeouts were found.

5.3 Perceived Workload and Subjective Rating
Figure 6 shows the average NASA-TLX scores out of 100. The statis-
tical tests revealed that the tracking setup has a significant effect on
physical demand, F2,38 = 5.347, 𝑝 < .05. Post-hoc analyses showed
significant differences between physical demand (𝑝 < .05) induced
by GazeCast (handheld) (𝑀 = 29.75, 𝑆𝐷 = 25.93) and GazeCast (on
a stand) (𝑀 = 16.75, 𝑆𝐷 = 19.21). Hence, the participants perceived
GazeCast (handheld) as more strenuous than the webcam and Gaze-
Cast (on a stand), which is expected. No significant effects of the
tracking setups on other workload dimensions were found.

Figure 7 shows participants’ subjective ratings. No statistically
significant difference was found by Freidman test for the tracking
setup on any of the self-reported aspects: ease, speed, accuracy,
eye tiredness, and willingness to use daily. However, participants
reported that they could perform tasks most easily (𝑀 = 4.4, 𝑆𝐷 =

0.99) and accurately (𝑀 = 3.95, 𝑆𝐷 = 1.1) with GazeCast (on a
stand). This aligns with the results of Error counts. Nonetheless,
compared to both GazeCast conditions, participants perceived the
webcam setup to be the fastest (𝑀 = 4.25, 𝑆𝐷 = 1.02), least tiring
(𝑀 = 2.2, 𝑆𝐷 = 1.15), easiest to use (𝑀 = 4.3, 𝑆𝐷 = 1.13), and most
likely to be used in daily life (𝑀 = 4, 𝑆𝐷 = 1.12).

5.4 Feedback and Ranking
For Usability and user experience, out of the 20 participants, 10
participants reported that they liked to use the mobile as an eye
tracker because it was easy to use, “using GazeCast (handheld) is
easier than using a webcam” (P17), “using GazeCast (handheld) was
the easiest, as I could hold the device at my comfort height” (P19). For
participants’ preferences, ten participants reported that they would
prefer a mobile phone as an eye tracker over a webcam for privacy
and security reasons, as reported by four participants, “Although
it is more comfortable to go with a built-in eye-tracker, I prefer to
use my phone as an eye-tracker for security reasons” (P14). Finally,
for the ranking of the tracking setups, after finishing all tasks, We
asked the participants to rank the tracking setups based on their
preference, we found that GazeCast(handheld), and webcam were
preferred equally (8 out of 20), then GazeCast (on a stand) with four
votes.

6 DISCUSSION
We investigated the potential of using a mobile device’s front-facing
camera as an eye tracker to interact with public displays. In the
following, we discuss the implications of using GazeCast for gaze-
based interaction with public displays.

6.1 Accuracy and Tracking Setups
Comparing our three tracking setups, the webcam one had the
highest error and false detection rate (35 out of 360 selections),

Figure 6: The mean responses for the Raw NASA TLX ques-
tionnaire.

Figure 7: Participants rating for the six usability aspects. 1
“strongly disagree” - 5 “strongly agree.” Error bars represent
the SD.

compared to 18 for GazeCast (handheld) and 15 for GazeCast (on a
stand). Demonstrating that in our implementation, using a smart-
phone decreases inaccuracy by over 50% and outperforms using
a webcam. This might be due to the distance between the user
and the webcam (60 cm), which makes gaze estimation difficult,
especially when the webcam has a lower resolution than the mobile
device. Finally, due to the smaller distance when participants hold
the phone with their hand (around 30 cm) the error rate was almost
negligible. Another possible reason is that, because users are ac-
customed to apps that utilize the front-facing camera, they know
how to hold their phone in a way that ensures their face is captured
by the front-facing camera. On the downside, holding the mobile
device for a long time results in a shaky setup, which in turn slows
selection compared to the webcam setup. However, the interaction
with public displays is normally short, around 8 seconds [Gentile
et al. 2020; Müller et al. 2010] which won’t require huge physical
demand. Our findings show that utilizing a mobile device for gaze
interaction while holding it works better for a shorter period of
time. This aligns with our anticipated use cases for GazeCast, where
users interact shortly with public displays to obtain information.

6.2 Ubiquitous and Privacy-preserving Gaze
Interaction

The novel idea of GazeCast enables the ubiquitous use of eye-gaze
interaction on different interfaces. Even if it is anticipated that eye
trackers will soon be incorporated into most devices, this would
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require hardware integration which is costly. GazeCast allows gaze
interaction with public displays with minimal costs for the display
owner, and leveraging personal mobile devices, which are already
ubiquitous. GazeCast would have promising applications in shop-
ping centers and in airports where public info displays are common,
and on ATMs.

However, with gaze interaction becoming ubiquitous, users’ pri-
vacy is at risk. Privacy is particularly important in this context
given the rich information content available in human eye move-
ment [Kröger et al. 2020]. several user characteristics, including
age, gender, mental illnesses, personality traits, and more, can be
inferred from users’ collected gaze data. On the other hand, the
majority of users do not recognize the risks of sharing their gaze
data, therefore they are willing to share their data with multiple
parties [Steil et al. 2019]. In our implementation, the processing was
done on the server to ensure a fair comparison with the webcam
condition, but the GazeCast concept can enable privacy-preserving
gaze-based interaction as processing could be done on the user’s
phone. This would prevent gaze data from being shared with a
server or a third party. This shows that GazeCast is an effective
and low-cost solution to enable gaze-based interaction on public
displays while maintaining users’ privacy.

6.3 Supporting Multiple Users
The GazeCast concept allows multiple users to interact with the
same screen at the same time, which is a common requirement
for pervasive public displays [Memarovic et al. 2014]. Although
in our experiment one user interacted at a time, below we discuss
how our implementation can be extended to support multiple users
in terms of 1) connection methods and 2) feedback and screen
indicators. For the connection methods, there are various strategies
for connecting with the public display. The simplest method we
used in our implementation was QR codes. However, since the
majority of smartphones have NFC readers, it is also possible to
utilize other types of technology, such as NFC tags or BLE beacons
[Mäkelä et al. 2017]. To allow multiple users to connect, multiple
sockets can be generated randomly and sent to various devices to
establish connections. For the feedback and screen indicators, when
multiple users interact with the same display, users need a way
to distinguish their controls. Previous work visualized the users’
gaze and employed different colours to differentiate users’ gaze
cursors [Zhang et al. 2017b]. Another approach could be to split the
screen into multiple sections, one per user. Similarly, each section
can be mapped to a colour that is mapped to a particular user. On
the downside, this may impact the accuracy of the interface as the
targets will have to be smaller and potentially closer to each other
to fit into one display. Public displays researchers studied ways to
support users in identifying their on-screen representation [Khamis
et al. 2018b], but not for gaze interfaces which open future work
directions.

7 LIMITATIONS
As the work aims to investigate GazeCast as a concept, we did
not explore the effect of the holding posture, face visibility, and
lighting conditions which might affect users’ experiences. However,
these are ongoing research topics in mobile eye tracking that are

forecasted to be addressed in the near future, and thus we leave
for future work. Also, we attempted to maintain consistency in the
distance between participants and the camera by using the same
distance for both the Webcam and GazeCast (on stand). In contrast,
for GazeCast (handheld), we told the participants to hold the phone
they would do naturally. However, it is important to acknowledge
that the different camera resolutions may have introduced a po-
tential confounding factor that could impact the accuracy of our
results.

8 CONCLUSION AND FUTUREWORK
We presented GazeCast, a novel system that leverages users’ per-
sonal handheld devices to enable gaze-based interaction with public
displays. We used qualitative and quantitative measures to evaluate
GazeCast. While the results show that the selection time and per-
ceived workload increase with GazeCast, users’ feedback suggested
that they appreciate how GazeCast allows for flexible positioning
and potential privacy benefits when interacting with public dis-
plays. Future work can explore how many concurrent users can
use the display without affecting the detection accuracy. Another
interesting direction is to investigate the different user distances
and sweet spots in relation to the detection accuracy.
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