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Figure 1: With data collected on realistically looking synthesised desktop images, we uncover the factors that impact no-
ticeability of notifcations. For a concrete desktop image and user attention focus, we build noticeability maps. These maps 
visualise the locations at which a notifcation is likely to be missed (red) or likely to be seen (blue). 

ABSTRACT 
Desktop notifcations should be noticeable but are also subject to 
a number of design choices, e.g. concerning their size, placement, 
or opacity. It is currently unknown, however, how these choices 
interact with the desktop background and their infuence on no-
ticeability. To address this limitation, we introduce a software tool 
to automatically synthesize realistically looking desktop images 
for major operating systems and applications. Using these images, 
we present a user study (N=34) to investigate the noticeability of 
notifcations during a primary task. We are frst to show that visual 
importance of the background at the notifcation location signif-
cantly impacts whether users detect notifcations. We analyse the 
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utility of visual importance to compensate for suboptimal design 
choices with respect to noticeability, e.g. small notifcation size. 
Finally, we introduce noticeability maps - 2D maps encoding the 
predicted noticeability across the desktop and inform designers 
how to trade-of notifcation design and noticeability. 
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1 INTRODUCTION 
Desktop notifcations are widely used to notify users about incom-
ing emails, upcoming calendar entries, or other relevant events. 
To ensure that important information is actually noticed, notif-
cations need to efectively attract and divert the users’ attention 
from a primary task to a secondary task [44]. At the same time, 
notifcations are part of the visual design of the user interface (UI) 
and are subject to aesthetic considerations. For example, designers 
may customise a notifcation’s appearance in terms of size, place-
ment, or opacity [46]. However, such design decisions can severely 
impair the user’s ability to perceive notifcations [24]. To create 
notifcations that are not only in line with a designer’s vision but 
also functional and noticeable, it is imperative for UI designers to 
understand the factors that impact noticeability. 

Prior work studying the noticeability of desktop notifcations has 
investigated factors including notifcation size, shape, color, move-
ment, or opacity [16, 24, 28]. While this research has decomposed 
infuences on noticeability in a highly controlled manner, it has two 
main limitations. First, these studies lack realism and have mainly 
used simplifed or only few, carefully-selected desktop images as 
well as highly abstract visual representations of notifcations [24, 28]. 
As a result, it remains unclear whether fndings obtained in such 
artifcial settings generalise to realistically-looking notifcations 
placed on realistic desktop images. Second, prior work has not 
studied the impact of the desktop’s visual appearance (i.e. desktop 
background, icons and any applications) on noticeability. It is well 
known that visual stimuli from the environment guide people’s 
attention. To replicate these guidance efects, so-called saliency 
and visual importance models have been proposed [4, 11, 21]. It 
is therefore conceivable that the visual appearance of the desktop 
background also has a signifcant impact on noticeability and mod-
els of visual importance can be used to uncover these efects. One 
major obstacle that has so far prevented these studies is the lack of 
a dataset containing diverse and realistic desktop images. 

Our work makes two original contributions to address these 
limitations. To study noticeability of desktop notifcations in more 
diverse desktop environments, we introduce a software tool to ef-
ciently synthesise a large number of realistic desktop images and 
notifcations from three major operating systems. The synthesised 
desktop images contain realistic icons, task bars, diverse wallpa-
pers, as well as variable arrangements of application windows. Our 
implementation of the software tool is publicly available1. Using 
these images, we conducted a 34-participant controlled user study 
in which participants were asked to detect notifcations while per-
forming the primary task of following a moving dot via the mouse 
pointer. While this primary task directed participants’ attention to 
desktop locations across the entire screen, notifcations appeared 
at random locations on the desktop interface and in diferent sizes, 
opacities, and aspect ratios. Using a state-of-the-art method to pre-
dict visual importance of desktop images [11], we show for the frst 
time that the visual appearance of the background at the location 
of the notifcation has a signifcant impact on noticeability. 

We analyse how visual importance interacts with major notifca-
tion design factors investigated in previous work [24, 46], including 

1https://github.com/sanderstaal/screenshot-synthesize 

opacity and size of notifcations as well as the distance of the noti-
fcation to the current attention focus of the user (i.e. the primary 
task location). This allows us to suggest how saliency-optimised 
display of notifcations could be used to allow UI designers a larger 
degree of freedom for choices on these design factors that are sub-
optimal with respect to noticeability. For example, a designer might 
want to display a notifcation with a low opacity value in order to 
integrate it aesthetically into the UI. While this is, in general, detri-
mental to noticeability, the notifcation can still be detected with 
high probability by taking visual importance into account when 
choosing the location at which the notifcation will be displayed. 

We fnally introduce noticeability maps - 2D maps that encode the 
expected noticeability at all locations on the desktop (see Figure 1). 
In contrast to current visual importance maps, our proposed no-
ticeability maps are estimated from our study data and encode the 
interaction between visual importance and the users’ current focus 
of attention (see Figure 2). These visualisations of noticeability val-
ues for diferent desktop regions provide an intuitive tool that can 
help designers to maximise noticeability of notifcations, thereby 
increasing the degrees of freedom for aesthetic design decisions 
without sacrifcing noticeability. 

2 RELATED WORK 
Our research is related to prior work on (1) understanding and 
optimising user interface notifcations as well as (2) computational 
modelling of visual attention and visual importance in images. 

2.1 Understanding and Optimising 
Notifcations 

Given the ever-increasing number of digital interfaces that generate 
an even larger number of notifcations everyday [33], research on 
understanding and optimising notifcations has surged in recent 
years. Early work has shown that while notifcations are often per-
ceived as a source of disruption [19] and distraction [17], a lack of 
notifcations may lead to additional task switching [20]. It is well 
established, however, that excessive notifcations and alerts have 
negative consequences and lead to inattention [25]. Consequently, 
signifcant research eforts have been spent on optimising when 
and how notifcations are presented across a wide range of devices, 
from desktop computers [18], to mobile phones [29, 31, 33, 38], 
smartwatches [41], and even smart TVs [46] or virtual reality head-
sets [14]. Others explored multi-device settings – Weber et al. [47] 
studied how to best distribute notifcations across multiple devices 
while Voit et al. [45] investigated how notifcations were perceived 
in such scenarios. 

Notifcations on mobile devices have been studied extensively, 
especially concerning interruptibility of the user [1, 30, 32, 35], per-
ceptibility of notifcations [3, 9], as well as attentiveness [34] to 
notifcations. Focusing on interruptibility, i.e. fnding the oppor-
tune moment in time to interrupt users and deliver notifcations, 
Poppinga et al. [35] developed a method using device-integrated 
sensors to predict when to display notifcations. In addition to the 
device’s context and sensors, Mehrotra et al. [30] proposed an ap-
proach that included the content of a notifcation for the same 
task. Further research investigated what factors infuence percep-
tibility of notifcations. For example, inserting visual elements or 

https://github.com/sanderstaal/screenshot-synthesize
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Figure 2: Realistic desktop image created with our tool (A), along with the corresponding visual importance map (B) and our 
proposed noticeability map (C). In contrast to visual importance maps that generally encode bottom up attention distributions, 
noticeability maps encode the likelihood of a notifcation to be detected while considering both bottom up (visual importance) 
and top down (the users’ current focus of attention – white circle) features as well as the appearance and design of a notif-
cation. Visual importance map (B): Blue represents low visual importance, yellow and red represents high visual importance. 
Noticeability map (C): Blue is used for areas in which notifcations will be highly noticeable and yellow to red is used for areas 
where a notifcation is expected to not be noticed (and thus should not be placed). Separate noticeability maps can be computed 
for diferent notifcation properties like opacity and scale. 

issuing notifcations at specifc times of the day leads to higher click 
rates [3]. Exler et al. [9] studied perceptibility of diferent notifca-
tion types (e.g. ringtone, vibration, or LEDs) in diferent locations 
such as the user’s pocket or on a table. Mehrotra et al. [31] studied 
diferent notifcation factors (e.g. sender-recipient relationship or 
alert modality) and their impact on response time and the users’ 
ability to perceive notifcations. A complementary task to predict-
ing interruptibility is to predict attentiveness [34], which defnes 
the level of attention paid towards a notifcation or message. Pielot 
et al. [34] used the smartphone sensors to build a random forest 
model to predict high or low attentiveness to notifcations. While 
all the diferent facets of mobile notifcations have been thoroughly 
explored over the years, desktop notifcations and what makes them 
noticeable remains under explored. 

In contrast to mobile devices – where optimising notifcations is 
(mostly) about when and how to notify users, desktop environments 
are more complex and enable additional design considerations such 
as notifcation placement or diferent visual features. While the 
impact of notifcations on users’ interaction has been studied pre-
viously [18], the characteristics that make them (in)efective has 
only recently attracted research interest. Klauck et al. [24] pro-
vided frst evidence of how diferent design properties, such as size, 
opacity, movement speed, or blink frequency, infuence a notifca-
tion’s noticeability and distractivness. For example, their fndings 
showed that a notifcation’s size provides fexible control of no-
ticeability relative to the gaze distance, while reducing the opacity 
can make notifcations more subtle. Jones et al. [22] investigated 
shape-changing circuits as a way to provide notifcations in the 
periphery. Mairena et al. [28] also investigated peripheral notifca-
tions, however, in their work, they studied the efect of diferent 
feature combinations (e.g. shape, color, or motion) and task inter-
ference. Another work analysed the efects of emphasis on simple 
scatter plots or visualisation [27]. 

While the above works provide a deeper understanding of some 
of the features that make visual desktop notifcations more efective, 
the main limitation of prior works is the lack of realism and diversity 
in the appearance of notifcations and the backgrounds on which 

notifcations were presented. Visual stimuli in the environment 
and in complex UIs are known to guide user attention [4, 11, 21], 
however, prior works did not investigate this efect and its impact 
on noticeability. In our work, we rely on computational models of 
visual attention to study the impact of the desktop’s appearance on 
notifcations and their noticeability. 

2.2 Computational Modelling of Visual 
Attention in HCI 

Visual attention modelling (saliency modelling) is a core research 
area in computer vision [4] that aims to predict saliency maps that 
topographically encode the probability of visual attention over an 
image. Bottom-up models [13, 21] extract visual features only from 
the image while top-down models aim to incorporate task-related 
infuences [36, 51]. 

Early work to use such models in HCI focused on web pages. 
Still et al. showed that bottom-up saliency maps correlated well 
with fxations during free-viewing of web pages [42]. Buscher et 
al. [6] proposed a method that leveraged both eye tracking data 
collected from 361 web pages and features from HTML to predict 
saliency of diferent page elements. A similar approach was taken 
by Shen and Zhao [40] who presented a computational saliency 
model that integrated both multi-scale low-level features and priors 
calculated from eye tracking data during web page viewing. They 
later improved their method to also include higher-level semantic 
feature representations, e.g., from object detections [39], Zheng 
et al. [52] presented a learning-based framework for predicting task-
driven visual saliency on web pages whereas Li et al. [26] showed 
how an SVM trained on manually selected bottom-up and top-down 
factors could predict human visual attention while viewing web 
content. Bulling et al. used a visual saliency model in the context 
of gaze-based authentication to mask out salient image regions 
that would attract users’ visual attention to improve the security 
of graphical passwords [5]. 

Methods that model attention on graphical user interfaces have 
only recently started to being investigated. Xu et al. proposed a 
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spatio-temporal approach that used bottom-up user interface fea-
tures as well as top-down information in the form of users’ mouse 
and keyboard actions [50]. Gupta et al. developed a deep learning 
model based on an autoencoder to predict the saliency of mobile 
interfaces [15]. Another line of work introduced a learning-based 
method to predict “visual importance” for data visualisations [7], 
which encodes the relative importance of diferent visualisation or 
design elements. While ground truth saliency is typically collected 
from gaze data or approximated using mouse clicks and interfaces 
such as BubbleView [23], visual importance annotations require 
manual labelling of the visualisation elements that the annotators 
consider to be important (e.g. the title). As such, according to Bylin-
skii et al. [7], the importance scores are more uniformly distributed 
on the visualisation elements. This is benefcial for applications 
where the information from the visual stimuli is more structured 
such as in data visualisations or desktop images. 

In our work, we used the recent Unifed Model of Saliency and Im-
portance (UMSI) [11] to understand and predict visual importance 
on desktop images. UMSI is especially suited four our application, 
as it is both able to predict visual importance on UI elements as well 
as slaiency on natural images, which are often part of the desktop 
background. As such, our work is the frst to consider the context 
in which a notifcation is embedded (i.e. the desktop background 
including any applications) and its efect on noticeability. 

3 SYNTHESISING REALISTIC DESKTOP 
INTERFACES 

To systematically study noticeability of desktop notifcations in 
realistic desktop environments, we needed a large and diverse col-
lection of desktop images. However, to the best of our knowledge, 
there is no other work that provides such a dataset nor could we fnd 
publicly-available, high-resolution desktop screenshots, likely due 
to privacy concerns. For this reason, we decided to use an approach 
to automatically generate realistic desktop images. There exists 
only few prior work on this topic. For example, in SUPPLE [12], 
user interface rendering is modelled as a computational optimi-
sation problem to generate UIs that meet the device’s constraints 
while minimising user efort. Another tool is SpiderEyes [8], which 
is a system for designing attention- and proximity-aware collab-
orative interfaces for wall-sized displays. Based on the location 
and head position of up to four users, it automatically adapts the 
UI to support collaborative scenarios. Todi et al. [43] presented a 
tool that leveraged the user’s browsing history to adapt a website’s 
layout in a way such that the design looks familiar to each user. 
However, none of these works can be used to create realistically-
looking desktop environments or notifcations. To fll this gap, we 
developed a software tool to efciently synthesise any number of 
realistic desktop images and notifcations from three major oper-
ating systems: Microsoft Windows, macOS, and Ubuntu. Figure 3 
shows a few examples generated using our tool. We describe the 
components of the synthesis tool below: 

• Desktop background. We collected 67 diferent wallpapers 
for each operating system covering diverse motifs, styles, or 
colours. When generating a new image, the tool randomly 
samples a wallpaper and then places a random number of 
shortcut icons on it. Icons can be placed either in a grid 

pattern or randomly, similar to what most operating systems 
provide. If icons are placed in a grid alignment, they will 
be placed in blocks, close to one another to mimic realistic 
desktop setups. Our tool contains 100 common application 
icons collected from the Internet. 

• Menu and task bar. The graphical interfaces of each operating 
system typically contain menu or task bars such as the top 
bar and the dock in macOS. Our tool synthesises these bars 
and populates them with items. Each text in these bars is 
substituted with random words and the number of items 
per section is varied, meaning that the tool can create both 
densely and sparsely-flled task bars. For cases where the real-
world counterparts contain icons, the tool samples random 
icons from the same collection used to generate desktop 
shortcuts. Each of the three operating systems supported by 
our tool have a menu bar where frequently used applications 
and tasks are displayed (like the dock in macOS). As an 
additional customisation, our tool randomly selects some of 
these items and adds a ’highlighted’ efect to them, which is 
used by the system to indicate currently open applications. 

• Applications. Once the tool generated the desktop background 
and all required menu and task bars, the desktop image is 
randomly populated with a number of open application win-
dows. It can also happen that no open window is added to 
the image. We collected 150 screenshots from 100 commonly 
used websites, some of which inspired by prior work [40]. 
We captured each screenshot twice, once in a maximised, 
widescreen browser window (3831 x 1933 px) and once in 
a restricted-sized browser window (1500x1500 px). This al-
lowed us to capture diferent responsive designs of a website 
and hence obtain more diverse visual appearances. When 
generating new application windows, the tool randomly 
selects either a maximised, full screen window or restricted-
sized windows that only cover parts of the background. Each 
website screenshot is enclosed in a proper browser appli-
cation window: MS Edge for Windows, Safari for macOS, 
and Firefox for Ubuntu. A random string is generated to dis-
play the URL within the browser window. In addition to the 
website collection, we added screenshots of other common 
applications, such as Minesweeper or File Explorer, for each 
operating system (46 for Windows, 6 for macOS, and 24 for 
Ubuntu). Similarly to website screenshots, the tool gener-
ates a window which encloses the application screenshot 
in the same design as used by the OS. Due to the lack of di-
verse and natural high-resolution screenshots of websites or 
applications available on the Internet, all screenshots were 
manually captured by an experimental assistant. 

• Notifcations. Besides desktop images, the tool can be used 
to generate random but realistically-looking notifcations 
in the same style of the corresponding operating system. 
For increased diversity, we also covered notifcations that 
difered from ofcial style guides2. Our tool frst randomly 
samples one out of six (4:15, 3:4, 25:16, 35:14, 38:9, and 42:7) 

2E.g. macOS Notifcations https://developer.apple.com/design/human-interface-
guidelines/macos/system-capabilities/notifcations/ 

https://developer.apple.com/design/human-interface
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Figure 3: Using our proposed software tool, we are able to synthesise realistically-looking desktop images (left) and notifca-
tions (right). The tool can generate desktop images for three diferent operating systems that contain realistic icons, task bars, 
diverse wallpapers, and diferent application windows. 

possible aspect ratios for the notifcation, where 35:14 is clos- The fnal desktop image is realised by merging all of the individ-
est to the actual ratio used by these operating systems. All ual components, i.e., the desktop background, menu, task bar, and 
notifcations contain a randomly generated text of variable applications. The outcome is a realistically-looking desktop image 
length. In addition, the notifcation body may also contain of 1920x1080 px. For further realism, we used the default font from 
an icon (from the desktop shortcuts collection) or an action each operating system and randomly placed a mouse icon on the 
button (only for Window and macOS). image. This image formed the basis on which notifcations were 

shown during the user study. 
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Figure 4: Example image participants saw during the user study. As a primary task, participants were instructed to follow a 
moving green dot with their mouse pointer. The dot moved along a random zig-zag path. If the mouse pointer was outside of 
the moving dot, its colour was shown in red (A). As a secondary task, participants were asked to detect notifcations appearing 
on the screen. Figure (B) shows a notifcation with medium opacity in the upper left corner. Participants were instructed to 
press the space bar whenever they detected a notifcation. 

4 USER STUDY 
We used our tool to synthesise 300 diferent desktop images and 
notifcations, 100 for each supported operating system. Using these 
desktop images, we conducted a controlled user study in which 
participants had two tasks. Similarly to previous work [24], we 
employed a primary task in which participants had to follow a 
moving dot with the mouse pointer in order to manipulate partici-
pants’ focus of attention. While concentrating on the primary task, 
the secondary task involved detecting notifcations appearing at 
random locations. Combining these two tasks results in a diverse 
set of confgurations of user attention and notifcation locations. 

4.1 Apparatus 
The user study was conducted remotely and online in a web browser, 
and all participants could use their own personal computer for it. 
We restricted the study to participants using either a monitor or a 
laptop screen (no mobile or tablet devices allowed). The study was 
performed in a full screen browser window and participants were 
asked to not close this window during the experiment. In case the 
generated desktop image (1920 x 1080 px) did not ft the resolution 
or aspect ratio of a participant’s screen, the image was automatically 
resized and padded with black borders where necessary. The largest 
resolution used by our participants was 2560 x 1440 px (used by fve 
participants) and the smallest resolution was 1228 x 691 px. Most of 
our participants (18) used our default resolution of 1920 x 1080 px. 

4.2 Experimental Procedure 
In line with previous work [24] on noticeability of notifcations, 
we employed a dual-task design. As in [24], participants followed a 
moving dot with the mouse pointer (primary task) and confrmed 
the appearance of notifcations by pressing the space bar (secondary 
task). Each participant performed several sessions of this task. In 
detail, for each session a random desktop image from a random op-
erating system (Linux, Mac or Windows) was sampled and served 
as the background on which a small coloured dot moved along 

a random zig-zag path. The path was generated by successively 
connecting random on-screen locations. For the primary task, par-
ticipants were instructed to follow the moving dot with the mouse 
pointer as well as they could. If the mouse pointer was outside the 
moving target, the colour of the dot changed from green to red (see 
Figure 4A). We chose this task as users are required to focus their 
attention on the moving dot and the location can be used as a proxy 
to the users’ focus of attention. The path followed a zig-zag pattern 
to (a) make sure participants could not predict the path and were 
required to continuously concentrate on the task and (b) to sample 
maximally diverse attention points from the screen. 

As a secondary task, participants were asked to detect notif-
cations appearing on the screen by pressing the space bar (see 
Figure 4B). Notifcations were randomly displayed in time and lo-
cation on the screen with varying opacity (between 20% and 100%), 
sizes, and aspect ratios. All these parameters were chosen randomly 
to collect a diverse set of confgurations and prevent bias efects in 
participants’ response behaviour. We especially did not include a 
separate condition with notifcations placed in the upper right or 
lower right corner of the screen (as is default in major operating 
systems). Any diference between such a condition and randomly 
placed notifcations might be due to bias efects resulting from 
the participants being able to clearly distinguish this as a special 
condition. Each notifcation was displayed for 2.5 seconds, where 
during the frst and last 0.5 seconds a fade-in (or fade-out) efect 
was used. If a participant confrms a notifcation, the notifcation 
immediately vanished from the screen. No matter whether the par-
ticipant confrmed a notifcation or not, the application showed the 
next notifcation after a random time of 2 to 5 seconds. 

Every session lasted two minutes. Upon completion of a ses-
sion, participants were awarded a score refecting how well they 
performed in the two tasks. Their score was displayed on a global 
(anonymised) leader board, where they could compare their per-
formance with other participants from the study. We used this 
leader board as a motivation, to encourage participants to repeat 
and perform multiple such sessions in our study. At the beginning 
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Figure 5: Example of visual importance extraction. Given an 
input image A we extract a visual importance map (B) using 
the method proposed by Fosco et al. [11]. This visual impor-
tance map is subsequently normalised by the average visual 
importance screenshots from the particular operating sys-
tem (C) to produce the fnal importance map (D). 

of the user study, we asked each participant to play a least six such 
sessions. We measured that the time needed for a participant to 
complete six sessions is approximately 20 minutes. Participants 
were free to take breaks between these sessions, where they could 
also close and re-open the full screen window. Any data collected 
during the study was completely anonymised and could not be 
linked to any participant. 

4.3 Participants 
We recruited 42 participants via local university mailing lists that 
recorded 248 sessions in total. Out of those, 14 sessions were in-
valid because participants quit the full screen mode during a data 
collection session. Out of the 42 participants, 34 (20 male, 13 female, 
one unspecifed) fnished at least six sessions. Based on a demo-
graphics survey, the ages of the participants ranged from 18 to 52 
(M=26.09, SD=6.15). 24 participants used a desktop monitor, while 
the remaining 13 participants were using a laptop screen. Four 
participants reported sufering from visual impairments that were 
fully corrected by glasses or contact lenses. None of the participants 
reported defciencies in color perception. 25 participants considered 
themselves as having a good technical expertise. 25 participants 
used a Windows operating system on their private computer, 5 par-
ticipants used macOS, and 4 participants used a Linux distribution. 
The operating system installed on the computer did not infuence 
which synthesised desktop image was shown to the participants. 

5 RESULTS 
Of the 34 participants in our study, one participant had to be re-
moved from further analyses because of detecting less than half of 
the presented notifcations (indicating that the participant did not 
focus on the task adequately), resulting in 33 remaining participants. 
In the following, we frst describe how we extracted visual impor-
tance at notifcation locations from desktop images. Subsequently, 
we present analyses on the connections between noticeability and 
notifcation design factors. Finally, we introduce noticeability maps 

VI Distance Size AR Opacity 

Detected 
Median 
Mean 
SD 

0.94 
0.93 
0.09 

0.32 
0.32 
0.02 

0.0125 
0.0125 
0.0006 

2.79 
2.84 
0.28 

160.3 
160.3 
8.576 

Missed 
Median 
Mean 
SD 

1.24 
1.31 
0.45 

0.41 
0.40 
0.05 

0.0108 
0.0107 
0.0010 

2.93 
2.99 
0.84 

125.0 
121.9 
16.43 

Wilcoxon 
T 
p 

16 
< 0.001 

17 
< 0.001 

12 
< 0.001 

242 
0.49 

0 
< 0.001 

Table 1: Median, mean, and standard deviation of notifca-
tion design factors for detected as well as missed notifca-
tions. The design factors are the visual importance of the 
background at the notifcation location (VI), the distance of 
the notifcation from the current locus of attention, the noti-
fcations’ size, its aspect ratio (AR), and its opacity. Addition-
ally, we report results of two-sided Wilcoxon signed-rank 
tests comparing detected and missed notifcations for each 
factor (n=33). With Bonferroni correction, p-values smaller 
than 0.01 can be considered statistically signifcant. 

that encode the expected likelihood of detection for notifcations 
presented at diferent locations. For statistical analysis, we use non-
parametric tests due to violated normality assumptions in some 
cases and report median µ1/2, mean µ, and standard deviation σ̂ . 

5.1 Extracting Visual Importance on Desktop 
Images 

To extract visual importance on the generated desktop images we 
use the recent state-of-the-art method for visual importance predic-
tion across graphic design types by Fosco et al. [11]. The advantage 
of this method over other approaches is its ability to predict visual 
importance on natural images as well as on graphical designs and 
mobile user interfaces. This fts our purpose, as the desktop inter-
actions we study contain images along with graphical designs and 
user interface elements. In order to better capture which regions 
in the desktop image stand out relative to the expected visual im-
portance distribution on desktop images, we subtract the average 
visual importance computed over all desktop images generated 
for a given operating system from each single visual importance 
map for the corresponding operating system (see Figure 5 for an 
example). To compute the visual importance of a desktop image 
at the location where a notifcation is placed, we take the average 
visual importance score of the area covered by the notifcation. 

5.2 Efects of Visual Importance on 
Noticeability 

To check whether visual importance at the location of a notifcation 
is connected to the probability of the notifcation being detected, 
we conducted a Wilcoxon signed-rank test on the visual importance 
at the notifcation location with the two conditions “notifcation 
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Figure 6: Infuence of diferent factors on the probability for a user to detect (i.e. notice) a notifcation. Error bars indicate 
95% confdence intervals. From top left, in clockwise order, the individual factors are: The visual importance of the desktop 
image at the location where the notifcation is placed, the distance of the notifcation to the current focus of user attention, 
the relative size of the notifcation on the screen, the opacity of the notifcation ranging from 0 (fully transparent) to 255 (fully 
opaque), and the aspect ratio of the notifcation expressed as width divided by height. 

detected” (µ1/2 = 0.94; see Table 1 for more information) and “noti-
fcation not detected” (µ1/2 = 1.24). This test reached signifcance 
(T=16; p<0.001; n=33). For a more detailed picture on how visual 
importance is connected to the noticeability of notifcations, we 
binned visual importance values into ten equally sized percentiles 
(10%,20%,...,100%) and plot the probability of notifcations being 
detected for each visual importance bin (see top left of Figure 6). 
The fgure shows a clear decrease in the detection probability with 
higher visual importance scores with a high plateau for low visual 
importance scores at around 0.9 detection probability and a low 
plateau between 0.65 and 0.7 for high visual importance scores. 

We did not include a condition with standard notifcation lo-
cations (upper right for Mac/Linux, lower right for Windows) in 
our study design because such a “special” condition could easily 
bias participants’ responses. In contrast to randomly placing no-
tifcations, sessions with fxed notifcation locations could easily 
be identifed by participants as being diferent. Hence, participants 
could anticipate where a notifcation will show up and thus always 
notice it. Nevertheless, it is still possible that notifcations placed 
in standard locations have diferent noticeability. To test this hy-
pothesis, we analysed the detection probabilities of notifcations 
that were placed (by chance) in standard locations. We defned a 
notifcation to be in a standard location for macOS and Linux if it 
was placed in the top right corner of the screen. More specifcally, 
we checked whether the top right corner of the notifcation was 
both within the uppermost and the rightmost 20% of the screen. 
For Windows, due to a diferent standard location for notifcations, 
we checked for the lower right corner of the screen. In total, the 

study had 117 notifcations presented in standard locations. For 
these notifcations, the median detection probability across all 33 
participants was 0.83 (µ = 0.75; σ̂ = 0.29). For notifcations pre-
sented in any other location, the median detection probability was 
0.78 (µ = 0.79; σ̂ = 0.09). A two-sided Wilcoxon signed-rank test 
for detection probability as dependent variable was not signifcant 
(T=235; p=0.42; n=33). Therefore, our analysis does not indicate 
that whether a notifcation is presented in a standard location in-
fuences detection performance. Another hypothesis was that prior 
experience in using a specifc OS can infuence what participants 
perceived as the usual, standard location of a notifcation. To in-
vestigate this possibility, we focused on Windows users, which 
constituted the largest group in our participants. For these users, a 
total of 85 notifcations were placed in the lower right corner of the 
screen, which is the default for Windows. The median detection 
probability for these notifcations was 0.80 (µ = 0.74, σ̂ = 0.28), 
whereas outside this area, we observed a median detection probabil-
ity of 0.81 (µ = 0.80, σ̂ = 0.10). A two-sided Wilcoxon signed-rank 
test comparing these conditions was not signifcant (T=112; p=0.45; 
n=23). Given the few notifcations placed by chance in such default 
locations, it is difcult to draw any general conclusions. Results 
tend to indicate that placing notifcations in standard locations did 
not have a strong infuence on detection performance. 

5.3 Infuence of other Factors 
We conducted Wilcoxon signed-rank tests to check whether the 
detection of a notifcation is connected to the additional design 
factors investigated in our study (see Table 1). These tests revealed 
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Figure 7: Interplay of the efects of visual importance of the background on the detection probability of notifcations with 
other factors. From left to right: distance of the notifcation to the current focus of user attention; size of the notifcation; 
opacity of the notifcation; aspect ratio of the notifcation. 

that detected notifcations are signifcantly closer to the current 
focus of attention, that they are signifcantly larger, and that their 
opacity is signifcantly higher. For a more detailed picture on how 
noticeability is related to these design factors, we binned the fac-
tors in the same way as we did for visual importance (see Figure 6) 
and computed detection probability for each bin. Only aspect ra-
tio is an exception as due to the study design six distinct aspect 
ratios exist. Several factors have a clear, and generally monoto-
nous, impact on noticeability. The distance of the notifcation to 
the current focus of attention (i.e. the distance to the moving dot) is 
inversely related with the detection probability. When notifcations 
are placed very close to the current attention focus, the detection 
probability is above 0.9, but it decreases to below 0.7 for notifca-
tions appearing far away on the screen. A further important factor 
infuencing users’ ability to detect notifcations is opacity, where 
low-opacity notifcations only reach a detection probability of 0.5 
while high opacity notifcations are detected with more than 0.9 
probability. The proportion of the screen covered by a notifcation 
is also positively connected to its noticeability, ranging from 0.7 
detection probability for small notifcations to almost 0.9 for large 
notifcations. The relation between aspect ratio (notifcation width 
divided by notifcation height) and noticeability is less obvious. The 
medium aspect ratios appear to be most noticeable, with a peak at 
an aspect ratio of 35:14. This could indicate a preference for aspect 
ratios that are close to what users typically are confronted with in 
their daily interactions. 

While our study was not designed to investigate the impact of 
the type of operating system on the noticeability of notifcations, we 
can still make use of our data in an exploratory numerical analysis. 
The operating system was sampled randomly at the beginning of 
each session. As a result, the number of users being exposed to 
at least one session of a given operating system difers (nLinux = 
30, nW indows = 26, nMac = 25). The detection probability for 
notifcations in the Mac OS (µ1/2 = 0.71; µ = 0.71; σ̂ = 0.13) was 
lower than in Linux (µ1/2 = 0.88; µ = 0.84; σ̂ = 0.12) or Windows 
(µ1/2 = 0.84; µ = 0.81; σ̂ = 0.11). The lower noticeability of Mac 
notifcations might be a result of their bright colour which creates 
less contrast on many backgrounds. 

5.4 Interplay of Visual Importance with other 
Factors 

We analyse how visual importance of the desktop image at the no-
tifcation location interacts with the other factors (Figure 7). Each 
plot shows the dependence between visual importance and detec-
tion probability for high, medium, or low values on the respective 
other factor. We partitioned the data into high, medium, and low 
for each of these factors by using the highest third, middle third, 
and lowest third of the data. In contrast to the aspect ratio of the 
notifcation, we can observe a clear interaction efect with visual 
importance for opacity of the notifcation, distance of the notifca-
tion to the attention focus, and notifcation size. This interaction is 
similar for all three factors. In general, if the other factor challenges 
noticeability (e.g. low opacity, or large distance), the efect of visual 
importance on noticeability is especially strong. If the other factor 
makes detection easy, the efect of noticeability is less pronounced. 
For example, the range of probability scores resulting from diferent 
visual importance values is below 0.15 for notifcations displayed 
at a small distance to the current focus of attention, but close larger 
than 0.4 for notifcations displayed at a large distance from the 
current focus of attention. 

These results indicate that visual importance could efectively 
be used to ofset the detrimental efects on noticeability resulting 
from a small notifcation size, a notifcation with low opacity, or a 
notifcation that is far away from the current focus of attention. 

5.5 Noticeability Maps 
In order to present the efects of diferent factors on noticeability 
in an intuitive way, we propose the concept of noticeability maps 
(see Figure 8). These noticeability maps encode the expected like-
lihood of detection for notifcations when presented at diferent 
locations on the desktop. To construct these maps, we frst com-
pute the detection probability for diferent combinations of visual 
importance scores and distances of the notifcation to the attention 
task based on the data observed in our study. To strike a balance 
between accuracy and robustness, we bin visual importance scores 
and distances in six bins each and compute the detection probability 
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for each of the resulting 36 combinations. Using linear interpolation 
between bins, we obtain a function f mapping from visual impor-
tance and distance to the attention focus to a detection probability. 
To create a noticeability map for a given desktop image and atten-
tion focus, we compute for each pixel its visual importance and its 
distance to the attention focus. Using f we obtain an estimate of 
the detection probability at this pixel. 

Figure 8 B and C show noticeability maps for the same desktop 
image but for diferent locations of the attention focus (indicated 
by the white circle). Regions of the desktop that are assigned a 
high estimated noticeability are at the blue end of the color spec-
trum. Regions with low estimated noticeability are at the red end 
of the color spectrum, efectively warning designers that notif-
cations placed in these regions are unlikely to be noticed. Apart 
from distance and visual importance, the noticeability maps also 
encode the interaction between these two factors. This is visible 
when comparing Figure 8 B and C. Regions in the upper left show 
large diferences in noticeability when they are far away from the 
attention focus (see Figure 8 B). In contrast, when these regions 
are close to the focus of attention, in addition to a generally higher 
noticeability, smaller diferences are present (see Figure 8 C). 

Finally, Figure 8 E and F shows the noticeability for high and low 
opacity notifcations, respectively. Here, we restrict the data used in 
the computation of the noticeability map to the 50% of notifcations 
highest or lowest in opacity. While it is much more challenging 
to place noticeable notifcation with low opacity, the noticeability 
map reveals several locations at which even a notifcation with low 
opacity is likely to be detected. A similar pattern can be observed 
when contrasting notifcations of large size with those having a 
small size (not shown in the Figure). 

6 DISCUSSION 

6.1 On the Synthesis Tool 
In this paper, we introduced a tool for the synthesis of realistic 
desktop images that we will make available as an open-source im-
plementation upon acceptance. Our tool allowed us to conduct the 
frst study on the noticeability of notifcations displayed on realistic 
desktop images. This is a signifcant step over prior work that has 
focused on simplifed or carefully-selected desktop images as well 
as highly abstract visual representations of notifcations [24, 28]. 
With our tool, we could not only solve the problem of a missing 
dataset containing realistic desktop images, but it also provides 
additional benefts. In contrast to a dataset of images, our tool al-
lows full control over the synthesis process, allowing researchers to 
experimentally vary the created images. This enables psychologists 
to e.g. study how fndings obtained with simple shape- and colour 
stimuli [10, 48] translate to realistically looking desktop environ-
ments. Furthermore, due to the generative approach, a semantic 
segmentation of the images is directly available. Work on natural 
images suggests that this feature can be highly useful when con-
ducting research on human attention prediction [49]. Our tool can 
be easily adapted to the needs of researchers by adding their own 
applications, icons, or desktop images. In the future, we plan to 
extend this tool to incorporate additional characteristics of user 
interactions. While desktop images are largely static, some dynamic 
elements exists, e.g. website banners or embedded videos. To study 

such interaction scenarios, we plan to extend our tool with dynamic 
elements. Furthermore, we also plan to adapt our tool to synthesise 
realistic mobile user interfaces. 

6.2 On the Impact of Background on 
Noticeability 

Further, we are frst to show that visual importance of the location 
at which a desktop notifcation will be presented is a strong prior 
for the probability that the notifcation will be detected by the user. 
Our results show that this connection between visual importance 
and noticeability is inverse – higher visual importance of the back-
ground at the notifcation location results in lower noticeability. 
Uncovering the precise mechanism behind this connection is sub-
ject to future research. At this point, we can only speculate on 
possible explanations. A low-level explanation of this efect could 
be that the visual importance measure we used is correlated with 
visual clutter [37]. This is plausible as high visual importance is 
usually assigned to regions in the images containing a large degree 
of clutter. A large degree of visual clutter, in turn, could make it 
more challenging for notifcations to “stand out” from their sur-
rounding. A possible higher-level explanation could be that users do 
not expect notifcations to appear at locations that already contain 
UI elements like application windows or opened websites. Such UI 
elements often get assigned a high visual importance, leading to the 
inverse connection between visual importance and noticeability. 

While we analysed the interactions of visual importance with 
several other factors of notifcation design (e.g. size, opacity, or as-
pect ratio), our study was not designed to investigate the infuence 
of personal characteristics. Relevant characteristics to address in 
future work include users commonly used operating systems, their 
age, and their profession. Another interesting direction for future 
work will be to investigate the impact of diferent primary tasks. Es-
pecially if tasks are associated with specifc UI elements, this might 
impact the noticeability of notifcations beyond a task-agnostic 
notion of visual importance. 

6.3 On the Relevance for UI Designers 
Our work suggests that by taking visual importance into consid-
eration, UI designers can optimize placement of notifcations for 
maximum noticeability. Visual importance can even serve to ofset 
the efects of choices for other factors that are sub-optimal from a 
noticeability perspective. For example, Figure 7 shows the efects 
of visual importance on noticeability for diferent opacity values. 
Noticeability is considerably worse for low opacity notifcations 
compared to high opacity notifcations. However, when placing the 
notifcation at a location with low visual importance, a detection 
probability of 0.8 can be achieved. This is comparable to the detec-
tion probability of high opacity notifcations placed at locations 
with high visual importance. Visual importance can be used in a 
similar fashion to ofset efects of distance between the current 
focus of attention and notifcation location, as well as notifcation 
size. Thus, taking visual importance into account, designers have 
more possibilities to create notifcations that integrate into the user 
interface aesthetically without sacrifcing noticeability. 

Using visual importance to guide notifcation placement requires 
the appearance of the desktop to be known. This is the case in two 
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Figure 8: Examples of noticeability maps. Red indicates low-noticeability regions, blue indicates high-noticeability regions. 
The left column shows the efect of diferent locations of user attention on noticeability. A: Input image. B: Noticeability map 
for attention focus on the upper left of the desktop (white circle). C: Noticeability map for attention focus on the lower right 
of the desktop (white circle). The right column shows the efect of diferent opacity values on noticeability. D: Input image. E: 
Noticeability map for high opacity notifcations and attention focus on the lower right of the desktop. F: Noticeability map 
for low opacity notifcations and attention focus on the lower right of the desktop. 

main scenarios. First, if the appearance of an application is mainly 
static, visual importance can guide designers in choosing where 
notifcations should be commonly displayed in this application. 
Second, when the actual screen content is known at runtime, vi-
sual importance could be used to optimise notifcation placement 
dynamically. Future operating systems could either automatically 
place notifcations of diferent applications, or ofer access through 
an API to noticeability maps, giving application developers and 
designers fne-grained control over noticeability. Our analysis on 
the interaction between visual importance and the distance to the 
current focus of user attention indicates that by taking the users’ 
attention into account, the quality of the proposed placement op-
tions can be increased. Users’ focus of attention can be estimated 
either through dedicated eye tracking equipment or computational 
methods that e.g. analyse interactive behaviour [2, 50]. 

As an intuitive visualisation of the impact of diferent factors on 
noticeability for a concrete desktop image, we proposed noticeabil-
ity maps (see Figure 8). These noticeability maps can be used by 
designers to better understand how diferent notifcation parame-
ters play out in a concrete user interface. Designers can additionally 
simulate users’ focus of attention in order to understand which 
notifcation placements lead to sufcient noticeability for the likely 
locations of user attention (e.g. a text entry feld). While already 
useful for manual optimisation of notifcations, the noticeability 
maps also point the way towards automatic means of optimising 
notifcations that we are planning to explore in future work. 

7 CONCLUSION 
In this work we presented a novel tool to synthesize realistically 
looking and diverse desktop screenshots and notifcations. We used 

these images to conduct the frst study on the noticeability of desk-
top notifcations displayed on realistically looking desktop images. 
We found that visual importance of the desktop at the location 
where a notifcation is placed is inversely related to its noticeabil-
ity. We analysed how this efect interacts with other infuences 
on noticeability including notifcation size, opacity, and distance 
to users’ attention focus. We discuss how optimising notifcation 
placement with respect to visual importance can allow for a larger 
degree of freedom for design choices on other factors while still 
maintaining high noticeability. Finally, we introduce the concept 
of noticeability maps that can be used to visualise the efects of 
diferent factors on noticeability of notifcations in a concrete desk-
top interface and thereby act as a guideline for designers. Taken 
together, our synthesis tool and fndings open up an exciting new 
avenue in notifcation research and represent an important step 
towards future smart notifcations that are automatically optimized 
for noticeability. 
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