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Figure 1. We explore the use of text-based stimuli to enable gaze interaction with public displays using the Pursuits technique [47]. Motivated by the
fact that much of the content on large displays is text, we investigate two use cases: (a) Users can spontaneously interact with text-based content without
calibration. A sample application could be a survey where answers in the form of text are selected by reading them (left). (b) An eye tracker can be
calibrated implicitly as users read text on the screen (right). After calibration, fine-grained information on the user’s gaze point are obtained.

ABSTRACT
In this paper we show how reading text on large display can be
used to enable gaze interaction in public space. Our research
is motivated by the fact that much of the content on public
displays includes text. Hence, researchers and practitioners
could greatly benefit from users being able to spontaneously
interact as well as to implicitly calibrate an eye tracker while
simply reading this text. In particular, we adapt Pursuits, a
technique that correlates users’ eye movements with moving
on-screen targets. While prior work used abstract objects
or dots as targets, we explore the use of Pursuits with text
(read-and-pursue). Thereby we address the challenge that eye
movements performed while reading interfere with the pursuit
movements. Results from two user studies (N=37) show that
Pursuits with text is feasible and can achieve similar accuracy
as non text-based pursuit approaches. While calibration is less
accurate, it integrates smoothly with reading and allows areas
of the display the user is looking at to be identified.
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INTRODUCTION
As they are becoming ubiquitous and cheap to deploy, displays
can be found in public spaces such as airports [4], shopping
centers [9] and train stations [8]. At the same time, sensing
technologies are becoming increasingly available for easy and
low cost integration with public displays, supporting differ-
ent ways of interaction. Common interaction modalities for
displays include touch [10], smart phone interaction [3, 12],
mid-air gestures [34], and recently also gaze [20, 48, 55].

Gaze holds particular promise for public displays [22]. It is
intuitive [46], natural to use [47], indicates visual attention,
and usually precedes action [31]. However, a drawback is
that eye trackers require calibration, which is time-consuming
and cumbersome [31]. While devoting time for calibration is
acceptable for desktop settings, public displays require imme-
diate usability [33] as interaction times are usually short [34].
Hence, calibration has been identified as one of core challenges
of gaze-enabled public displays [21]. Prior work investigated
alternative techniques [48, 55].

A popular approach is Pursuits [47, 49], which relies on corre-
lating movements of dynamic objects on the display with the
smooth pursuit eye movement performed when following a
moving object. Pursuits was successfully deployed for mul-
tiple public display installations, where it was used for both
gaze interaction [20, 48] and eye tracker calibration [6, 36].
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Meanwhile, one of the most prominent content types on pub-
lic displays is text. For example, displays are utilized for
opinion gathering and sharing in public areas [17, 24]. In
many applications passersby read and select from a set of text-
based options [15, 16, 35, 42, 44, 50]. And also (pervasive)
advertising on public displays often heavily relies on text [1].

Nevertheless, little is known about whether and how Pursuits
can be used with text. To date, Pursuits has been studied with
moving dot-like stimuli, for which the user gazes at a single,
spatially clearly defined target. On the other hand, the use
of Pursuits with textual stimuli is not straight forward: read-
ing is not spatially confined and overlays the smooth pursuit
movement, which could result in difficulty in correlating eye
movements and the trajectory of text-based stimuli. Also, due
to the Midas effect, gaze-based systems need to distinguish
users reading textual content from interacting with it.

We investigate the use of text as stimulus for Pursuits. We
see two main use cases for public displays: (1) It can be used
for calibration-free gaze interaction [20, 48]; by displaying
moving objects, users can “pursue” the object they want to
select. The system then determines which object the user is
looking at by correlating eye movements and movements of
the objects. (2) Pursuits can be used for easier and less tedious
calibration of eye trackers [6, 36]; by following a moving
stimulus, mappings between movements of the user’s eyes and
the stimulus can be collected and used for calibration.

To provide a proof-of-concept we implemented two applica-
tions: EyeVote is a survey application for public displays that
enables a user to select an answer from a set of text-based op-
tions. Read2Calibrate shows animated text on the screen and
feeds the gaze data to an algorithm that gradually enhances the
calibration of the gaze tracking. We used both systems in two
lab studies with the goal to assess accuracy based on different
configurations (text inclination, text speed, text length, and
trajectory) and to obtain early insights on the users’ view. The
results show that text-based stimuli can be used for Pursuits-
based gaze interaction but that designers need to be careful
about the text trajectories and text length in order to mini-
mize detection errors. Text-based calibration is in general less
precise than state-of-the-art calibration procedures. However,
the accuracy is sufficient to identify objects a user is looking
at on the screen. We found text inclination to have a strong
influence on the calibration quality. Both for interaction and
calibration designers may need to make a tradeoff between
the configuration leading to the most accurate results and the
users’ preferred configuration.

The contribution of this work is threefold: (1) We present a
prototype application, EyeVote, that allows text to be selected
using Pursuits and report on a user study with 19 participants,
assessing the accuracy and error rate based on different con-
figurations (text length, trajectory). (2) We introduce Read2-
Calibrate, a system for calibrating eye trackers for displays by
utilizing smooth pursuit eye movements and a text-based stim-
ulus. Again, we evaluated the system with regard to accuracy
based on different configurations (text inclination, text speed).
(3) We derive a set of guidelines and recommendations for
using text with Pursuits for both interaction and calibration.

RELATED WORK
We build on two main strands of previous work: gaze interac-
tion with public displays and interaction with text via gaze.

Gaze-based Interaction with Public Displays
Due to the benefits of gaze for public displays, two research di-
rections have emerged to counter the problems associated with
calibration on public displays: (1) enabling calibration-free
gaze interaction for displays, and (2) making gaze calibration
on public displays less tedious.

Calibration-free Gaze Interaction with Public Displays
Acknowledging the unsuitability of classic calibration for pub-
lic displays, multiple systems were built to provide calibration-
free gaze-based interaction. SideWays [53] and GazeHori-
zon [55, 56] use the pupil-canthi-ratio [54] to estimate hori-
zontal gaze direction without calibration.

Pursuits [49, 47] can also be used for calibration-free gaze
interaction. The technique requires displaying a dynamic inter-
face [48], where “pursuitable” objects move. Eye movements
are then correlated to the movements of the objects. The object
whose movement correlates the most with that of the eyes is
then assumed to be the one the user is looking at. Since its
introduction, Pursuits has been used in a variety of applica-
tions including text entry [29], PIN code entry [11, 28] and
entertainment applications [47, 49]. Pursuits has also been
used for interaction with smart watches [13, 14] and interac-
tion in smart environments [45]. The technique was shown to
be intuitive and positively perceived by users [20].

Eye Tracker Calibration for Public Displays
Previous work aimed to reduce the effort needed for cali-
bration. For example GazeProjector [27] allows gaze-based
interaction across multiple displays using one time calibration
and a mobile eye tracker. While mobile eye trackers have
several advantages for interaction, public display users cannot
be expected to wear them, unless trackers integrated with eye
wear become commonplace. Hence remote eye trackers are
currently more suited for that domain. Xiong et al. [52] used a
remote RGB-D camera that requires one-time calibration.

Work by Pfeuffer et al. [36] uses the eye’s smooth pursuit
movement to facilitate calibration. The approach relies on
showing a moving object, which acts as a stimulus for the eyes
to perform the smooth pursuit movement. Mappings between
eye movements and positions of the stimulus are then collected
and used to calibrate the eye tracker.

Pfeuffer et al. used a floating “Please wait” label to calibrate
eye trackers. Rather than reading a label and keeping fixating
it, our approach for calibration relies on gradually revealing
text, which intrigues the user to fixate at the gradually revealed
letters to understand the statement. Moreover, our work on
interaction with text via Pursuits investigates a different aspect,
namely we study how users can select from a set of text-based
options using Pursuits.

Interacting with Text via Gaze
In gaze-based systems, the “Midas touch” effect [18] occurs
when the system mistakes a user perceiving content for se-
lecting content. This effect is amplified in the case of text



as reading requires time to perceive and understand the text.
This challenge has been traditionally addressed by using dwell
times – the system would require fixating the action element
for a longer period of time (e.g. 1000 ms [30]).

Another approach to overcome the Midas touch is to use an-
other modality in addition to gaze. Users of EyePoint [25]
gaze at text, press and hold a keyboard button to magnify the
area, refine the selection, and then release the button to select
text. Stellmach et al. [40, 41] employed a similar approach
by combining gaze and touch input. Although this approach
was not used for text selection in particular, it is deemed suit-
able for the task. Kishi and Hayashi [23] combined gaze with
on-screen buttons to enable users to select text. Chatterjee et
al. [7] developed a text editor where users can move a text
cursor by using gaze and pinch gestures.

A third approach is to use gaze gestures. In work by Toyama
et al. [43], text selection was done either by repeatedly gazing
at the beginning and the end of the text to be translated, or by
gazing gradually from the beginning till the end of the text.

Sharmin et al. [38] introduced an automatic scrolling technique
that is based on the user’s gaze while reading text. Text 2.0 [5]
exploits gaze by, for example, revealing content based on the
words the user is currently reading.

Pursuits has the potential to cope with the Midas touch effect.
Reading overlays the smooth pursuit eye movement, making
false selections while reading less likely. Moreover, the Pur-
suits algorithm requires setting a window size, which is a time
frame after which the correlation is calculated. This gives
users the chance to perceive and read the text.

INTERACTING WITH TEXT USING PURSUITS
The use of text for interaction via Pursuits has not been inves-
tigated in detail before. With our work we close this gap and
support designers and developers when it comes to creating
text-based content suitable for interaction using Pursuits. In
particular, the following section introduces a prototype ap-
plication that allowed us important aspects of using text for
pursuit interaction to be investigated.

Concept and Implementation
We implemented a voting system called EyeVote, that uses
Pursuits as its only input mechanism for selecting one of sev-
eral floating textual answers (see Figures 1A and 2). Once the
system detects a selection, a confirmation message is shown
on the screen, telling the user which answer was recognized.
The message is kept for some seconds, followed by the next
question and its options.

In the following we describe our implementation of Pursuits,
and the experimental variables that we used in the study.

Text Selection via Pursuits
Pursuits works by correlating eye movements with those of the
selectable options. Prior work utilized the Pearson’s product-
moment coefficient to calculate the correlation. Based on
pilot experiments and previous work [14, 20, 47, 49], we used
the same correlation function with a threshold of 0.9 and a
window size of 2000 ms. This means that every 2 seconds, the

system computes Pearson’s correlation. The floating answer
whose movement correlates the most with the eye movement,
is deemed to be the object the user is looking at, as long as the
correlation is more than 90%.

To account for reading time and overcome the midas effect,
the used window size value is higher than those used in other
implementations (e.g. previous work used 500 ms [20, 47] and
1000 ms [14]).

Trajectories and Text Representations
We investigate how already established trajectory movements
perform with respect to text selection. In particular, the fol-
lowing trajectories were used in our experiments.

1. Circular trajectory [13, 14, 20, 47] (Figure 2 top left).
2. Linear trajectory [20, 47, 49] (Figure 2 rop right).
3. Rectangular trajectory [36] (Figure 2 bottom left).
4. Zigzag trajectory [47] (Figure 2 bottom right).
5. Mixed trajectory (each object follows one of the above

trajectories).

We supported different text representations for the answers:

1. Short answers (<25 characters).
2. Two-lined answers.
3. Long answers (25+ characters).

Evaluating Text Selection Using Pursuits
The main goal of this experiment was to understand the in-
fluence of different text characteristics on the accuracy of
selection via Pursuits. In particular, we compared the effect of
the aforementioned trajectory types and text lengths on detec-
tion errors. In addition, we assessed the effect of the different
trajectory types on the perceived workload. To minimize any
external influences, we conducted the study in the lab [2].

Design
The study was designed as a repeated measures experiment.
Each participant performed five blocks with each block cover-
ing one of the five trajectory types. In every block, participants
performed 4 selections × 3 text representations = 12 text selec-
tions using Pursuits. The order was counter-balanced across
participants using a Latin-square.

The theme of the study was a voting application, where par-
ticipants had to answer questions by selecting one of three
possible floating text-based answers via Pursuits (see examples
in Figure 2). In total, every participant answered 60 questions:
5 trajectory types × 3 text representations × 4 selections.

Apparatus
We deployed the EyeVote system on a 42-inch display (3810
× 2160 pixels) in our lab (see Figure 1A). The display was
equipped with a Tobii EyeX Controller (30Hz). Participants
stood at a distance of roughly 60 cm from the eye tracker.

Participants
We recruited 19 participants (10 females) between 20 and 60
years through mailing lists and social networks. Four of them
had previous experience with eye trackers but with Pursuits.
All participants had normal or corrected-to-normal vision.



(A)

Figure 2. We manipulated two experimental variables: (1) Trajectory type: circular, linear, rectangular and zigzag trajectories shown above, in
addition to a fifth condition “Mixed trajectory”, where each answer followed a different trajectory (arrows are only for illustration and were not shown
to participants). (2) Text representation: short answers (top), two-lined answers (bottom left) and long answers (bottom right).

Procedure
The experimenter began by explaining the study and asking
the participant to sign a consent form. The experimenter then
started the first block of 12 questions. After each successful
Pursuit selection and before showing the following question,
the system showed the user which answer was recognized. At
that point the participant was asked to confirm whether or not
the system detected the intended answer. In case of false detec-
tion, the participant was further asked to specify whether (a)
the system detected a selection prematurely (i.e. the participant
was still reading it) or (b) the participant was trying to select a
different answer. To assess the perceived workload associated
with text-based selection of every trajectory type, participants
filled in a Nasa TLX questionnaire after each block.

Results
We logged the time taken to answer each question as well as
the false detections by the system. In total, we recorded 1140
selections (19 participants × 60 selections).

We classify errors as (a) early detection errors, that are er-
rors due to a premature recognition of an option while the
participant is still reading, and (b) false detection errors, that
are errors due to the system recognizing a selection other
than the one the participant intended. Out of 1140 selections,
there were 124 errors (≈10.9%): 88 of them were early detec-
tions (≈7.7%), while 36 were false detections (≈3.2%).

Significantly different pair p-value
Circular (10.2%) Linear (36.4%) (p < 0.005)
Circular (10.2%) Zigzag (35.2%) (p < 0.05)

Rectangular (8.0%) Linear (36.4%) (p < 0.001)
Rectangular (8.0%) Zigzag (35.2%) (p < 0.005)

Mixed (10.2%) Linear (36.4%) (p < 0.001)
Mixed (10.2%) Zigzag (35.2%) (p < 0.05)

Table 1. Trajectory type has a significant main effect on early detection
errors, which are cases where the system recognized a selection while
the participant is still reading. The table above summarizes the results
of post-hoc analyses using Bonferroni correction, which revealed signif-
icant differences between multiple pairs. The numbers between brack-
ets denote the percentage of early detection errors caused by the corre-
sponding trajectory type out of all 88 early detection errors. The results
indicate that circular, mixed and rectangular trajectories result in fewer
early detection errors compared to linear and zigzag trajectories.

We classify errors as (a) early detection errors, that are er-
rors due to a premature recognition of an option while the
participant is still reading it, and (b) false detection errors,
that are errors due to the system recognizing a selection other
than the one the participant intended. Out of the 1140 se-
lections, there were 124 errors (≈10.9%): 88 of them were
early detections (≈7.7%), while the remaining 36 were false
detections (≈3.2%).

Early Detection Errors
A repeated measures ANOVA showed significant effects for
trajectory type on early detection errors F4,72 = 15.353,
p < 0.001. Table 1 summarizes the results of post-hoc anal-



Figure 3. Circular, rectangular and mixed trajectories result in signifi-
cantly fewer early detection errors compared to linear and zigzag ones.
False detection errors are also fewer in the case of circular trajectories.

yses using Bonferroni correction, which revealed significant
differences between multiple pairs. Circular, rectangular and
mixed trajectories result in significantly fewer early detection
errors compared to linear and zigzag trajectories.

No significant effects were found for text representation on
early detection errors. However the results suggest that fewer
early detections occurred in the case of short text (Figure 5).

False Detection Errors
No significant effects for trajectory type on false detection
errors were found (p > 0.05). Although a repeated measures
ANOVA showed significant effects for text representation on
false detection errors F4,36 = 3.916, p < 0.05, no significant
differences were found between pairs. This is likely due to
the low number of false detection errors (36 out of 1140 se-
lections). Figures 3 and 5 indicate a tendency for fewer false
detections in the case of Circular trajectories and short text.

Perceived Workload
Figure 4 summarises the mean values for each subscale. A
repeated measures ANOVA showed significant effects for tra-
jectory type on physical demand F4,84 = 4.631, p < 0.005
and effort F4,84 = 4.334, p < 0.005. Post-hoc analyses us-
ing Bonferroni correction showed that there are significant
differences between physical demand (p < 0.05) induced by
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Figure 4. Although circular trajectories were perceived to have equal
performance to mixed trajectories, participants perceived mixed trajec-
tories to be less demanding in all other aspects.

Figure 5. Fewer errors occurred when using short text compared to two-
lined and long text.

circular (M = 9.4, S D = 5.1) and mixed trajectories (M = 5.7,
S D = 3.8). Significant differences were also found between
effort (p < 0.05) to select circular (M = 8.9, S D = 5.5) and
mixed trajectories (M = 5.3, S D = 3.7).

In summary, although circular trajectories were perceived to
perform similar to mixed trajectories, participants perceived
mixed trajectories as less demanding in all other aspects.

Summary
The previous study showed that it is feasible to use Pursuits for
text selection, with the selectable text itself being the moving
stimulus. Our results confirm that by using certain text repre-
sentations and trajectory types, text can be used as a stimulus
for one of the major uses of Pursuits, that is interaction. Next
we investigate the second major usage of Pursuits, which is
eye tracker calibration, with text used as stimulus.

PURSUIT CALIBRATION USING TEXTUAL STIMULI
One of the major strengths of using text for Pursuit calibration
is that it allows for seamlessly calibrating an eye tracker on a
public display as passersby simply read text. Previous work by
Pfeuffer et al. [36] on Pursuit calibration also included a text
label “Please wait”, floating from one corner of the display to
another for 13 seconds. However, this required users to fixate
the floating word for a long period even after reading, which
might not be intuitive without prior instructions. To address
this, we reveal text gradually to intrigue users to pursue the
revealing text till its end (see Figure 1B).

In this section we present the implementation and evaluation
of our prototype system called Read2Calibrate.

Concept and Implementation
In our implementation of Read2Calibrate, we developed a
method that reveals the text gradually at an inclined angle.
As new parts of the text gradually appear, the preceding parts
disappear at the same rate (see Figure 1B). We opted for this
representation in order to (1) ensure that users follow the
stimulus (i.e. the text) till the end of the calibration session, (2)
control the user’s reading speed, and (3) calibrate for as much
area of the display as possible. In the following, we explain
the rationale behind these three motives.
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Figure 6. In the calibration session, participants read text gradually appearing across the display (as in Figure 1B). (A) and (B) show a sample text
displayed at inclination angles of 15◦ and 315◦. The angle and dotted lines are only shown for illustration and were not displayed to participants.

Revealing Speed
To correlate eye movements to movements of a stimulus, the
speed of the moving stimulus needs to be known beforehand.
Reading speeds are different across users [26], which makes it
difficult to predict which part of the text a user is looking at, in
particular in a public display setting with no prior knowledge
about the user1. However, revealing the text gradually ensures
a controlled reading speed, that is, if the user is reading any
part of the text, we can expect that the user is looking at the
letters being revealed at that moment. To ensure the user is
performing a smooth pursuit eye movement rather than a series
of saccadic jumps, new parts of the text are gradually revealed.
As newer parts of the text appear, preceding parts disappear
gradually, to reduce the chances of backward saccadic jumps
(see Figure 1B).

The speed of revealing text is an important variable. If the
revealing speed is too fast, users might not have enough time
to comprehend the text. Additionally, because eye trackers are
typically limited to a certain sampling frequency, the faster
text is revealed, the less mappings between eye movements
and points on the display are collected. On the other hand,
very slow revealing speed could also result in difficulty in un-
derstanding the text; as the time difference between revealing
the first and last letters of a word is larger, the more difficult
it becomes to understand the word. There is also a risk of the
users losing interest and looking at other parts on the screen,
which would negatively influence the calibration.

Based on prior work [36] and pilot tests, we introduced pauses
of 500 ms, 350 ms and 200 ms in-between revealing each letter,
which in visual angles equates to speeds of 1◦/s, 2.1◦/s, and
4◦/s. Higher and lower revealing speeds were found to be very
difficult to read. We refer to these speeds as the slow, medium
and fast speed, respectively.

Inclination Angle
Read2Calibrate needs to collect mappings between gaze points
and points on the display. To cover as large an area of the dis-
play as possible, previous work used a stimulus that moved

1Note, that a future implementation could try to automatically assess
the reading speed. This, however, would prolong the process.

across the display in diagonal, circular, or rectangular tra-
jectories [36, 37]. Circular and rectangular trajectories are
unnatural for gradually revealing text, while limiting stimuli
to a horizontal line would calibrate with respect to the x-axis
only. Hence, we chose to reveal the text in diagonal shapes.

However, since there has been no previous work about reading
inclined text that is gradually appearing, we experimented
with multiple inclination angles. Latin script is read from left
to right, hence the text could be shown in two ways: starting
from the upper-left part and ending in the lower-right part of
the screen, or starting from the lower-left part and ending in
the upper-right part of the screen. This translates to inclination
angles between 270◦– 360◦ and between 0◦– 90 degrees◦.

Taking into consideration the need to move the stimulus with
respect to both axes, we experimented with six angles: 15◦,
45◦, 75◦, 285◦, 315◦, and 345◦. Figures 6A and 6B show
sample text displayed at inclination angles of 15◦ and 315◦.

Calibration Correction
A prerequisite for calibration is to gaze at the stimulus. To
exclude cases where users are not looking at the stimulus, our
system calibrates after a certain correlation has been reached.
We used the Pearson’s product-moment coefficient with a cor-
relation threshold of 0.6, that is, the user is assumed to follow
the stimulus if the correlation between its movement and the
users’ eye-movements is ≥ 60%. We selected this value based
on pilot testing and experience from prior work [36, 47].

In a calibration session, the letters are placed on the screen
according to their angle. As the letters start to appear, pairs of
gaze points and the revealed letter’s coordinates are collected.

To calculate the correction offset, for every gaze point (G)
recorded by the eye tracker, we measured the Euclidean dis-
tance between G and the center of the currently revealed let-
ter (L). After the calibration phase ends, the sum of these
distances is divided by the total number of gaze points (N)
detected in that time frame. The resulting average distance
value is then used as the correction offset (see Equation 1).

O f f set =
∑N

k=1 Lk −Gk

N
(1)



Figure 7. After each calibration session, participants proceeded to a test-
ing session where they fixated at each shown point. During the study,
one stimulus was shown at a time and blinked for 3 seconds, before tran-
sitioning to the following one.

Evaluation of Pursuit Calibration Using Text
The goal of this study was to evaluate the effectiveness of
Read2Calibrate, as well as to understand the influence of the
different variables (inclination angle of the text and revealing
speed). We studied the influence of these variables on the
calibration quality, in addition to how users perceive them.

Apparatus
A 24 inch display (1920×1080 pixels) was equipped with a
Tobii REX eye tracker (30Hz) and deployed in our lab (see
Figure 1B). We invited 18 participants (10 females) aged 18
– 42 years (M = 26.2, S D = 5.3) through mailing lists. All
participants had normal or corrected to normal vision.

Design
In a repeated measures experiment, every participant per-
formed one calibration session per condition (6 angles × 3
speeds = 18 conditions). Each calibration session was fol-
lowed by a testing session, where the participant was asked
to gaze at a stationary point that appeared at nine positions
on the screen (see Figure 7). The point blinked at each of the
nine positions for 3 seconds. The order of the conditions was
counter balanced across participants using a Latin-square.
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Figure 8. The graph shows the mean Euclidean distances between the
gaze point and the target point after calibration by revealing text at dif-
ferent inclination angles, and in case of not applying any corrections.
Lowest distance is achieved when text is revealed at an angle of 315◦,
followed by 45◦.

Procedure
The experimenter started by explaining the study and the par-
ticipant filled in a consent-form. The participant was then
asked to stand at a distance of 60 cm from the eye tracker. The
font-size was set to be easily readable at that distance. In each
calibration session, the participant read a piece of a story that
was gradually revealing across the display according to the
condition’s angle and speed. The participant then proceeded to
a testing session, where we logged the gaze points, as detected
by the eye tracker, the coordinates of the revealed text, as well
as the corrections by our algorithm. After gazing at all nine
stimuli, the calibration was reset and the participant proceeded
to the next calibration session.

To reduce possible eye fatigue, participants were optionally
allowed to take a break after every 3 calibration sessions. No
visual feedback was shown during the whole experiment to
avoid influencing the participant’s gaze behavior.

We used a fable as a source of the revealing text. To ensure
the validity of our analysis, it was crucial to make sure partici-
pants paid attention to the text. Hence, we asked participants
three questions about the fable at the end. In addition to the
compensation for participation, participants were encouraged
to pay attention to the story by promising them an additional
monetary incentive (50 Euro cents) for each correct answer
they provide to the questions. All participants were aware of
the rewarding mechanism before taking part in the study.

We concluded the study with a questionnaire and a semi-
structured interview.

Results
To evaluate the effectiveness of Read2Calibrate, we based our
calculations on

1. the target point (the center of the stimulus which was
gazed at during the testing session),

2. the uncalibrated gaze point (the gaze point as detected
by the uncalibrated eye tracker), and

3. the calibrated gaze point (the gaze point after correction
by Read2Calibrate).

For each stimuli shown in the testing sessions, we measured
the mean Euclidean distance (1) between the uncalibrated
gaze points and the target point and (2) between the calibrated
points and the target point. Moreover, we measured the posi-
tive correction rate, which we define as the number of times
the calibrated gaze point was closer to the target compared to
the uncalibrated one.

Quantitative Results
Figure 8 shows that the mean Euclidean distance is shorter
when text is revealed at angles of 315◦ and 45◦. Thus, these
angles result in better correction compared to others.

A repeated measures ANOVA showed significant main effects
for angle F3.2,51.3 = 5.2, p < 0.005 and speed F2,34 = 4.8,
p < 0.05 on positive correction rate. Post-hoc analysis using
Bonferroni correction showed a significant difference (p <
0.05) in positive correction rate for an inclination angle of
315◦ (M = 65%, S D = 0.06%) compared to 15◦ (M = 39.7%,



Figure 9. Revealing the text in a 315◦inclination resulted in the highest
number of positive corrections, e.g. 73% of the corrections by the Read-
2Calibrate brought the gaze point closer to the target.

S D = 0.05%), and also for 315◦ (M = 65%, S D = 0.06%)
compared to 345◦ (M = 41.4%, S D = 0.06%). There were
also significant differences in positive correction rate for fast
revealing speed (M = 40.7%, S D = 0.05%) compared to
slow revealing speed (M = 53.2%, S D = 0.045%). Figure 9
shows that angles of 315◦ and 45◦ resulted in more positive
corrections compared to other angles. The figure also shows
that fast revealing speeds result in less positive corrections.

Qualitative Feedback
When asked how easy it is to read the text at the different
angles (5-point Likert scale; 1=Strongly disagree; 5=Strongly
agree), participants indicated that most angles were easy to
read (see Table 2). As for the revealing speeds, participants
found the medium speed (Med = 5, S D = 0.6) to be easier
to follow compared to slow (Med = 4, S D = 1.3) and fast
speeds (Med = 4, S D = 1.2).

When asked about their preference, participants pointed that
they preferred angles that are closer to a horizontal line (i.e.
15◦ and 345◦) as they felt more natural. However as indicated
in the questionnaire, other angles are also easy to follow. On
the other hand, multiple participants indicated that it felt unnat-
ural to read the slow revealing text, P6 noted that “I felt I was
following the letters without really understanding the words”.
According to the participants, fast text is easy to follow, but
difficult to comprehend.

DISCUSSION & DESIGN RECOMMENDATIONS
Overall, the results of both studies suggest that text can be
used as a stimulus to support interaction and calibration using
Pursuits.

The text selection study showed that when using circular and
mixed trajectories, shorter text can be selected with high ac-
curacy using Pursuits while selecting longer pieces of text is
more difficult. The text-based Pursuit calibration study showed
that text can be an effective stimulus for seamlessly integrating
eye tracker calibration as users read text. More specifically,
gradually revealing text inclined at 45◦ or 315◦ at a speed of
2.1 visual degree angles per second highly improves the accu-
racy of the gaze point. The results also indicated that although

Text Inclination Angle 15◦ 45◦ 75◦ 285◦ 315◦ 345◦

Median Score 5 4 4 4 4 4.5
Standard Deviation 0.43 0.67 0.92 0.96 0.83 0.70

Table 2. The table summarizes responses of participants when asked if it
is easy to read text inclined at the corresponding angles (5-point Likert
scale; 1=Strongly disagree; 5=Strongly agree). This indicates that the
closer the text’s inclination to a horizontal line (i.e. 15◦ and 345◦), the
easier it is to read. However, the average scores of other angles as well as
feedback from participants indicate that although other angles are less
preferred, they are still readable.

participants preferred flat text, revealing text at inclined angles
is easily readable and can be used for calibration.

Text Selection via Pursuits
Overall, there was a low number of false detection errors –
36 false detection errors out of 1140 selections. Figure 3
shows that circular trajectories tend to be associated with
less false detection errors. The results of the text selection
study show that circular, rectangular, and mixed trajectories
result in fewer early detection errors compared to linear and
zigzag ones (see Figure 5 and Table 1). This means that
reading text moving in linear and zigzag trajectories results in
high correlation between eye movements and text movement,
making the system confuse reading with selection.

Reading involves repeated saccades across a line of text as
well as back to the beginning of the next line. Performing
these saccades while pursuing text moving in a circular or
rectangular trajectory distinguishes the eye movements from
the text’s trajectory. This reading overlay makes the gaze
trajectory less likely to correlate with that of the moving text,
giving the user a chance to read and comprehend the text.
On the other hand, reading text moving in linear and zigzag
motion can be hardly distinguished from a Pursuit selection,
resulting in a high correlation while reading, which in turn
results in many early detection errors.

Selecting Long Pieces of Text
Our motivation behind the use of different text representations
and trajectories was to study how the Pursuits method can cope
with a read-and-pursue eye movement. Our main finding is
that Pursuits is indeed suitable for text selection, but only with
shorter pieces of text. In cases where it is essential to show
passersby longer pieces of text to select from, we recommend
using a different stimulus.

R1: Use Pursuits for selection of short pieces of text; for
longer pieces of text (25+ letters) use non-textual stimuli.

In case longer textual descriptions are needed, a display could
be divided into two regions: a non-interactive region and
an interactive region. In the case of the voting application,
the non-interactive region could display the detailed answer
options, each with a short but meaningful headline. The in-
teractive region could then display the moving headlines only
from which users can then make their selection. Alternatively,
answers in the non-interactive region could be associated with
colors or shapes. However, this may result in a higher cogni-
tive load, since users need to associate colors or forms with
the correct answer option.



Choosing the Right Trajectory Type
Our analyses of the text selection experiment results show
that circular trajectories are safer to use, as they result in
significantly fewer errors. However circular trajectories are
perceived to be highly demanding (see Figure 4). Mixed
trajectories result in slightly more errors than circular ones.
However, mixed trajectories were perceived to be significantly
less demanding compared to other trajectories. This indicates a
trade-off between user preference and accuracy of the system.

R2: For peak performance when performing text selection
using Pursuits, move text in circular trajectories. To increase
user experience, a mixture of trajectories can be used together
with an undo option.

We conclude that if high accuracy when selecting text using
Pursuits is required, designers should opt for circular trajec-
tories. An example could be a situation where users are en-
countered in a passing-by situation or in a situation where
they have only too little time to undo their selections, such
as asking a question on customer satisfaction near a cashier.
On the other hand, in cases where user experience should be
maximized, mixed trajectories may be used that are slightly
more error prone. In these cases, a floating “undo” label could
be shown after the system detected a selection. An example
could be users filling in a longer survey in return for an in-
centive, such as a gift voucher. Here it may be acceptable to
occasionally ‘correct’ an answer while at the same time having
a less demanding experience with the system.

Text-based Pursuit Calibration
In general, participants’ feedback indicates that Read2-
Calibrate is positively perceived. The results of its evaluation
show that inclination angles that result in diagonal-like orien-
tation of the revealing text, such as 45◦ and 315◦, significantly
improve the accuracy of the gaze point. This is due to the
fact that these angles result in the text covering larger areas
of the screen. Inclination angles that bring the text closer to a
horizontal line are preferred by users (15◦ and 345◦), as they
are more similar to flat text which users are acquainted to read.
However, at these angles the text covers relatively less area
with respect to the y-axis, resulting in poor calibration.

Slow revealing speeds result in users focusing on letters and
losing track of the words they read. By analyzing the data, it
was found that when using slower speeds participants were
more likely to lose interest and look at other parts of the screen,
presumably out of boredom. Fast speeds result in less data
collected for the correlation check, which in turn results in
lower calibration accuracy. Moreover, participants reported
that revealing the text too fast makes it harder for them to
understand what they read. Medium revealing speed turned
out to be a good compromise: it is preferred by users and also
results in a good calibration quality.

It should be noted, however, that the accuracy achieved by
Read2Calibrate is lower than that of previous approaches that
use Pursuits for calibration as well as of explicit calibration
methods commonly known from eye tracking in desktop set-
tings. At the same time, the major advantage of text-based
Pursuits calibration is the seamless integration with users sim-

ply reading content on the public display. As a result, the
calibration can be performed and used even in cases where the
reader is not being consciously aware of it. Gaze information
can then be used to enhance the user interface. For example,
one may show a description of different sights next to a map
of a city, like museums, churches, or historic buildings. As
the system is calibrated, dwell time towards different sights
could be used to determine what the reader is most interested
in and additional information on how to reach a particular
sight together with a discount coupon could be presented.

R3: For moderate eye tracker calibration (accuracy of 5.8◦ of
visual angle), text-based Pursuit calibration is recommended
as it results in better user experience. If accuracy is crucial,
classical Pursuit calibration should be used.

The trade-off between accuracy and user experience can also
be found when determining the angles at which the revealed
text is inclined in Read2Calibrate. While bringing the text
closer to a horizontal line makes reading feel more natural,
revealing the text in a diagonal-like path results in the highest
accuracy. Very steep text (e.g. 75◦ and 285◦) result in both
low accuracy and worse user experience and should hence be
avoided.

R4: Use diagonally-shaped paths, at an inclination of 315◦
or 45◦, when revealing text to achieve highest accuracy with
Read2Calibrate. For better user experience at the expense of
calibration accuracy, reveal text in flatter shaped paths.

A clear recommendation with regard to revealing speed can
be provided. Here, accuracy is highest for medium revealing
speed ( 2.1◦/s) and this it in line with the users’ preference.

R5: For text-based Pursuit calibration, an average revealing
speeds of about 2.1◦ of visual angles per second should be
used.

The more comfortable a participant is with the revealing speed,
the more accurate gaze-to-display mappings are collected and
hence the more accurate the calibration is. Faster speeds result
in fewer mappings, while slower ones distract the user.

Use Cases and Integration With Interactive Applications
As a sample applications that can be explicitly controlled
using gaze, we implemented EyeVote, a voting system. Civic
discourse is a popular use case for public displays [15, 16, 35,
39], where passersby select from a set of text-based options
to express their opinions. Given the advantages of gaze for
public displays [22], gaze-based voting systems can utilize
Pursuits for selection of textual answers. Similarly, Pursuits
can be used to answer on-screen quizzes. Selection of text via
Pursuits can be useful in various other contexts, for example,
users can select from a set of text-based options displayed at a
museum to learn more about particular topics. In train-stations
and airports, Pursuits can be employed to set fare preferences
or pick products where possible options are displayed as text.

The second major use case is the implicit use of gaze data,
either for analysis or for adaptive interfaces. Therefore, text-
based Pursuit calibration can be integrated into public display
applications in several ways. For example, a common practice



to tackle interaction blindness on public displays is to use
call-to-action labels [32]. Such labels could serve as stimuli to
calibrate an eye-tracker via Read2Calibrate. Further stimuli
could be welcome messages or brief instructions on how to
use a system or how to play a game. While the aforemen-
tioned examples utilize Read2Calibrate at the beginning of the
interaction process, revealing text can also be shown amidst
interaction. For example, a short text could hint at hidden or
yet undiscovered features. Such a calibration while interact-
ing may be useful for displays featuring multiple applications.
Here, a game that is instantly usable may serve as an entry
point. As the user finishes playing the game in the course of
which the eye-tracker was calibrated using in-game textual
content, the display could present further content that could
benefit from knowledge about the user’s gaze behavior. Note,
that after the calibration, fine-grained gaze points can be col-
lected and, hence, also other types of eye movements, such as
fixations and saccades can be detected. As a result, an appli-
cation may determine interest towards a particular content –
this may be of particular interest for advertisers – as well as
identify difficulties of users in perceiving content, for example,
as they read text over and over again.

Limitations and Future Work
Firstly, our evaluations so far were conducted in the lab. While
this controlled setting was necessary to maximize internal
validity and obtain comparable results, future work could em-
ploy text-based stimuli for Pursuits in an in-the-wild setting.
Apart from verifying the results with regard to accuracy and
errors, this may yield further insights on audience behavior
and acceptance.

Secondly, participants of the text selection study answered 60
questions using Pursuits, whereas participants of the Read2-
Calibrate study performed 18 calibration sessions. In a real-
world situation, it is unlikely that users would perform such
a high number of selections and users would not be required
to verify the accuracy of the calibration. As a result, we
expect the study to have caused a higher level of eye fatigue
as an in-the-wild exposure to any of the systems would have
done. Hence, participants may have been overly critical during
their assessment of the system. Future work could capture
in-situ feedback to verify the impact of our approach on the
experience users have during use of our system.

Recent work explored feedback methods for Pursuit selections.
Kangas et al. [19] compared different feedback modalities
for Pursuits and found that haptic feedback is preferred by
users compared to visual and auditory feedback. Špakov et
al. [51] compared two smooth pursuit widgets to find that
circular widgets exhibit higher performance. An additional
direction for future work is to enable feedback methods to
improve the user experience when using EyeVote and Read2-
Calibrate. For example, in text-selection tasks, visual cues can
be used to incrementally highlight the text whose trajectory
correlates the most with eye movements, depending on the
current correlation value.

Another interesting direction for future work would be to
try different scripts. For example, Arabic and Hebrew are
read from right to left, while Chinese, Japanese and Korean

can also be read vertically. In our implementation of Read2-
Calibrate, text was revealed in a diagonal path. The flexibility
of some east Asian scripts makes it possible to experiment
with revealing text in different paths (e.g., a rectangular path).

CONCLUSION
In this work we investigated the use of text as a stimulus for
Pursuits, to enable gaze-based interaction and eye tracker cali-
bration on public displays. Our results show that text can be
a powerful stimulus for both tasks. Shorter pieces of text can
be robustly selected using Pursuits, and text-based calibration
improves gaze point accuracy. We found that Pursuits-based
text selection is less error-prone when text follows circular
trajectories. We also found that the use of different trajecto-
ries simultaneously (mixed trajectories) is better perceived by
users and results in relatively few errors. Read2Calibrate was
shown to improve the accuracy of the gaze point, in particular
when using text that is gradually revealing at a speed of 2.1◦/s
and inclined at a 315◦ or 45◦ angle.
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