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ABSTRACT
By temporally integrating information about pupil contours ex-
tracted from eye images, model-based methods for glint-free gaze
estimation can mitigate pupil detection noise. However, current
approaches require time-consuming iterative solving of a nonlinear
minimization problem to estimate key parameters, such as eyeball
position. Based on the method presented by [Swirski and Dodgson
2013], we propose a novel approach to glint-free 3D eye-model
fitting and gaze prediction using a single near-eye camera. By re-
casting model optimization as a least-squares intersection of lines,
we make it amenable to a fast non-iterative solution. We further
present a method for estimating deterministic refraction-correction
functions from synthetic eye images and validate them on both
synthetic and real eye images. We demonstrate the robustness of
our method in the presence of pupil detection noise and show the
benefit of temporal integration of pupil contour information on
eyeball position and gaze estimation accuracy.
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1 INTRODUCTION
Over the last decades, camera-based eye trackers have become
a potent and wide-spread research tool in fields as disparate as
market research, psychology, and human-computer interaction.
Offering increased mobility compared to remote eye-tracking solu-
tions, head-mounted eye trackers, in particular, have enabled the
acquisition of gaze data during dynamic activities also in outdoor
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Figure 1: Estimating eyeball position by a least-squares in-
tersection of lines. (A) Ignoring refraction effects occuring
at corneal surfaces, the 3D circular pupil is mapped to a 2D
ellipse in the image plane via perspective projection (shown
in side view). After disambiguation, circular unprojections
of the 2D pupil ellipse have a normal parallel to the gaze
direction and their centers form a line passing through the
center of the 3D pupil (dashed red line). Since the distance
between eyeball and pupil center, R, is fixed, the eyeball cen-
ter is constrained to lie on a parallel line (red solid line). (B)
A change in gaze gives rise to an independent constraint for
eyeball position. (C) Eyeball position is estimated by a least-
squares intersection of constraining lines derived from a set
of pupil contours.

environments. Remote eye trackers typically rely on complex opti-
cal setups involving the active generation of reflections by means
of infrared (IR) LEDs and/or pairs of calibrated stereo cameras.
Due to the technical infeasibility of robustly porting such solutions
to head-mounted eye trackers, the latter need to solve the gaze-
estimation problem with more restricted hardware setups. From an
engineering point of view, glint-free gaze estimation using a single
near-eye camera is highly desirable.
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Recently, [Świrski and Dodgson 2013] have presented an ap-
proach for solving the gaze-estimation problem in this challenging
setting. At its core, their method involves the time-intensive nonlin-
ear optimization of a 3D eye model based on a set of pupil contours.

As demonstrated by [Dierkes et al. 2018], however, the approach
by [Świrski and Dodgson 2013] suffers a severe limitation: by not
accounting for corneal refraction it incurs systematic errors affect-
ing eyeball-position, gaze-angle, and pupil-radius estimates. By
reformulating eye-model optimization in terms of refraction-aware
cost functions, [Dierkes et al. 2018] extended the approach and
increased its optical veracity. While successfully accounting for
refraction effects, their method comes at the cost of an increased
conceptual and computational complexity.

Temporal integration of pupil-contour data, as in the approaches
proposed by [Świrski and Dodgson 2013] and [Dierkes et al. 2018],
is possible, since on short timescales the effects of headset slippage
can be neglected. On timescales beyond several minutes, however,
movements of head-mounted eye trackers with respect to the head
of the user are unavoidable and need to be accounted for [Sugano
and Bulling 2015]. One potential route for mitigating the effects of
headset slippage is the real-time update of pertinent eye-model pa-
rameters based on recent observations. To enable such approaches,
fast schemes for eye-model optimization need to be developed.

In this work we present a fast approach to refraction-aware eye-
model fitting and gaze estimation that provides the same optical
veracity as the one proposed by [Dierkes et al. 2018], albeit at a
reduced conceptual and computational cost.

The specific contributions of this work are twofold. (i)We demon-
strate that eye-model optimization can be recast as a least-squares
intersection of lines. We furthermore present a method for esti-
mating empirical refraction-correction functions which account for
the systematic effects induced by corneal refraction. By means of a
simulation study, we show that applying these correction functions
leads to refraction-aware eyeball-position, gaze-angle, and pupil-
radius estimates. (ii) Based on our novel approach, we present a
statistical analysis of expected eyeball-position errors in the pres-
ence of pupil detection noise affecting real eye images. In particular,
we quantify the beneficial effect of temporally integrating pupil con-
tour information. Moreover, we present sensitivity functions which
let us derive an estimate for the number of eye images required for
enabling gaze-estimation with state-of-the-art accuracy.

2 RELATEDWORK
Our work is related to previous studies on 1) model-based gazed
estimation, especially 2) contour-based approaches and 3) work
analyzing the repercussions of corneal refraction.

2.1 Model-based gaze estimation
Generally, video-based gaze-estimation methods can be categorized
as being either regression- or model-based [Hansen and Ji 2010].
Recently, however, also learning-based approaches have been pro-
posed [Mayberry et al. 2014; Tonsen et al. 2017]. Regression-based
methods typically aim at predicting 2D gaze coordinates by means
of phenomenological mapping functions [Fuhl et al. 2017, 2016;
Javadi et al. 2015; Kassner et al. 2014; Mansouryar et al. 2016; San-
tini et al. 2018; Świrski et al. 2012; Tonsen et al. 2016]. Model-based

approaches, in contrast, perform gaze prediction based on a 3D
eye model which is fit to features extracted from eye and/or face
images. While the use of facial features has been explored [Chen
and Ji 2008], typically pupil contours, pupil center position, and
glints are used to infer 3D eye model parameters [Hansen and Ji
2010]. Here, we are concerned with a model-based approach using
pupil contours alone.

2.2 Contour based approaches
Contour-based approaches analyze iris [Li and Li 2016; Tsukada
and Kanade 2012; Tsukada et al. 2011; Wang et al. 2003] or pupil
contours. Our approach is based on the analysis of pupil contours.
[Li et al. 2018] employ an alternative cost-function compared to
the one proposed by [Świrski and Dodgson 2013]. Their approach,
however, necessitates an iterative minimization and in particular
neglects the effects of refraction. A contour based approach dealing
with refraction was developed by [Lai et al. 2015], but their method
requires two cameras. Here, we are concerned with gaze estimation
based on a single near-eye camera only.

2.3 Effects of corneal refraction
In a glint-based setting, refraction-effects have been accounted
for by various approaches [Chen et al. 2008; Guestrin and Eizen-
man 2006; Hennessey et al. 2006; Ohno et al. 2002; Shih and Liu
2004]. All methods, however, rely on approximations of its non-
linear effects. The systematic errors in gaze-estimation accuracy
incurred by ignoring/approximating refraction in a remote glint-
based setting have been explored both experimentally and theo-
retically [Barsingerhorn et al. 2017; Villanueva and Cabeza 2008].
For head-mounted eye trackers which are based on pupil contours
alone, such a study has been recently provided by [Dierkes et al.
2018]. The latter work also detailed a non-approximate approach
for refraction-aware eye-model fitting and gaze estimation. The pro-
posed method, however, necessitates two iterative optimizations,
one for the eye model and one for gaze estimation. We show that
refraction-aware eye-model fitting and gaze estimation is achiev-
able in a non-iterative fashion and at a lower computational cost.

3 METHOD
In this section, after a brief review of the approach to eye-model fit-
ting proposed by [Świrski and Dodgson 2013], we demonstrate
that eye-model optimization can be recast in terms of a least-
squares intersection of lines and thus lends itself to a non-iterative
closed-form solution. Next, we detail how initial gaze estimation
is performed based on an optimized eye model. We then go on to
show that by making use of synthetic images, empirical refraction-
correction functions can be estimated. These remedy the system-
atic errors introduced by ignoring corneal refraction which affects
eyeball-position, gaze-angle, and pupil-radius estimates.

3.1 The Świrski model
The approach presented by [Świrski and Dodgson 2013] is based
on the premise that 2D pupils as recorded by a near-eye camera
are mere perspective projections of circular pupils, P , in 3D (see
Fig. 1A). This constitutes a simplifying assumption since it neglects
nonlinear distortions which are introduced to 2D pupil contours
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Figure 2: (A) Schematic of the two-sphere eye model accord-
ing to LeGrand. (B) Examples of eye images generated by ray
tracing of the two-sphere eye model with corneal refraction.
Eyeball center E = (0mm, 0mm, 35mm); gaze angles as indi-
cated. Adapted from [Dierkes et al. 2018].

by the effect of corneal refraction (see also [Aguirre 2018; Fedtke
et al. 2010; Gehrmann and Atchison 2018]). 3D pupil circles, P , are
modeled as being tangent to an eye sphere with radius R and center
E = (x ,y, z). Here and in the following, all positions are defined
with respect to a right-handed coordinate system coinciding with
the center of the camera, which itself is facing along the positive
z-axis. A 3D pupil P = (ϕ,θ , r ) is uniquely specified by its radius, r ,
and its position on the eye sphere in terms of spherical coordinates,
ϕ and θ .

Given an eye image, a set of edges along the pupil contour is
extracted by means of an automated pupil detection algorithm
[Świrski et al. 2012]. Collecting pupil information over a period
of time, thus results in N sets of two-dimensional pupil edges
Ei = {ei j with j = 1, . . . ,Mi }, where the subscript ranges over
the number N of recorded images andMi is the number of edges
extracted from the i-th image. By means of an iterative optimization
procedure, [Świrski and Dodgson 2013] estimate the parameters
of a single sphere center E and N pupils Pi = (ϕi ,θi , ri ) that are
consistent with the sets of pupil contours. Note, this approach as-
sumes the eyeball to be stationary over the period pupil contours
are collected.

In a first step, to each set of contour edges Ei an ellipse ℓi is fitted.
Subsequently unprojecting ℓi , assuming a full perspective projec-
tion by a pinhole camera model and fixing an arbitrary positive
radius r , results in two 3D circles [Safaee-Rad et al. 1992; Świrski
and Dodgson 2013; Wang et al. 2003]. We will refer to these two
circles as vri,0 and v

r
i,1, their respective centers as p

r
i,0 and p

r
i,1, and

their normals as ni,0 and ni,1. Note, the normals ni,0 and ni,1 do
not depend on r .

In the following, we will denote by T the perspective projection
that is associated with the camera and that is mapping points and
vectors in 3D to the image plane. It is the case, that T(ni,0)| |T (ni,1),
i.e. after projection the two normals are parallel in image space.
More specifically, one can show that the two lines fi,0(t) = T(pri,0)+
t · T (ni,0) and fi,1(t) = T(pri,1)+ t · T (ni,1) coincide. Furthermore,

they do not depend on r , since T(pri,0) and T(pri,1) are the same,
respectively, for each choice of r . Each ellipse, ℓi , is thus associated
with a unique line fi in image space.

The intersection of all lines fi coincides with E := T(E), i.e.
with the projection E of the eyeball center E. Due to noise and
simplifying assumptions built into the model, the least-squares
intersection of all lines fi is taken as an estimate of the projected
eyeball center.

Given E, the two unprojected circles vri,0 and v
r
i,1 can be disam-

biguated by noting that〈
T(ni,k ),E − T(pi,k )

〉
> 0 (1)

for either k = 0 or k = 1, where ⟨., .⟩ denotes the scalar product. In
other words, the projected normal points away from the projected
eyeball center for exactly one of the two unprojected circles. For
each i , one chooses the respective circle, which we refer to as vri ,
with center pri and normal ni .

Based on this disambiguation procedure, [Świrski and Dodgson
2013] derive a non-iterative algorithm for obtaining initial param-
eter estimates for E and all 3D pupils Pi . In a second step, a cost
function depending on all parameters is then minimized, measuring
the sum of suitable reprojection errors associated with all 3D pupils
Pi . For details with respect to the initialization algorithm and the
exact form of the cost function, we refer the reader to the original
paper [Świrski and Dodgson 2013].

3.2 3D eye model
Our approach is based on the two-sphere eye model originally pro-
posed by Le Grand [Le Grand 1957]. It approximates eye geometry
as consisting of two partial spheres (see Figure 2). One sphere corre-
sponds to the eyeball with center at position E = (x ,y, z) and radius
of curvature re . The second sphere represents the corneal sphere
with center C and radius of curvature rc . We assume the cornea
and aqueous humor to form a continuous medium with a single
effective refractive index, nref . While the effective refractive index
of the cornea varies slightly across the human population, we will
for most of the following assume it to be fixed to the physiologically
plausible value nref = 1.3375 [Guestrin and Eizenman 2006]. The
iris and pupil, P , within the Le Grand eye model are two circles with
radius rs and r , respectively, sharing the same center, p, lying at a
distance dp=

√
r 2e−r 2s from E along the direction EC . Their normals

coincide, are parallel to EC , and thus correspond to the optical axis
of the eye. In the following, we will be concerned with estimating
this optical axis of the eye.

The state of the model, similar to the one employed by [Świrski
and Dodgson 2013], is uniquely determined by specifying the po-
sition of the eyeball center E and the pose and radius of the pupil
P = (ϕ,θ , r ), where ϕ and θ are the spherical coordinates of the
normalized vector pointing from E into the direction of C . Note,
the radius R of the eye sphere in the Świrksi model is related to
parameters in the Le Grand eye model via R = dp . We will refer
to ϕ and θ as gaze angles. In some cases, we will also refer to the
angle between the optical axis and the negative z-axis as gaze angle.
In order to assure that ϕ = θ = 0 corresponds to a zero gaze an-
gle in the second sense, we adopt the following convention; given
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Table 1: Eye model parameters used in the generation and
analysis of synthetic and real eye images.

Parameter name Symbol Value Reference
Eyeball radius re 12 mm [Bekerman et al. 2014]
Cornea radius rc 7.8 mm [Guestrin and

Eizenman 2006]
Iris radius rs 6.0 mm [Gross 2008]
Pupil radius r 1-4 mm [Gross 2008]
Effective corneal nref 1.3375 [Guestrin and
refractive index Eizenman 2006]

the normalized gaze vector (p − E)/∥p − E∥2 = (gvx , gvy , gvz ), we
define (ϕ,θ ) = (arctan(gvz/gvx ) + π/2, arccos(gvy ) − π/2).

When not stated otherwise, the parameters in Table 1 were
used. We generate synthetic images of the Le Grand eye model at
640x480 pixels resolution by means of a ray-tracing pipeline (see
Figure 2B), in which we assume the camera to have a focal length
of f =620 pixels. Refraction occuring at the air-cornea interface was
implemented by means of Snell’s law.

3.3 Non-iterative estimation of eyeball position
Optimization in the Świrksi framework results in both an estimate
for eyeball position, E, as well as for gaze angles and pupil radii for
all observations, given by Pi = (ϕi ,θi , ri ). Our approach, in contrast,
proceeds in two stages. First, the eyeball center is determined. Gaze-
angle and pupil-radius estimates are obtained in a separate step.

In order to determine eyeball position, we perform the same dis-
ambiguation procedure on pairs of unprojected circles as proposed
by [Świrski and Dodgson 2013] (see Section 3.1). As a result, we
obtain a set of circles vri in 3D, corresponding to unprojections of
fitted pupil contours ℓi .

We will now show that when fixing i , each unprojection vri
constrains the eyeball position in 3D to lie on a specific line (see
Figure 1). To this end, note that for each choice of r , the circle vri
constitutes a 3D pupil candidate that is consistent with the observed
pupil ellipse ℓi . In the framework of the two-sphere model, if vri
were to be the actual pupil, it would thus need to be tangent to a
sphere of radius R = dp and position given by

дi (r ) = p
r
i − R · ni . (2)

Note, Eq. (2) defines a line, дi , in 3D that is parameterized by r . As
the 3D pupil corresponds to vri when r is chosen to be the actual
pupil radius, the eyeball center E is indeed contained in дi .

As any two different orientations of the optical axis give rise
to corresponding дi with linearly independent directions, eyeball
position thus corresponds to the intersection of all дi . Due to noise
and simplifying assumptions built into the eye model, this inter-
section in practice needs to be taken in a least-squares sense. In
closed-form it thus reads

E =

(∑
i
I − did

T
i

)−1 (∑
i

(
I − did

T
i

)
(−Rni )

)
, (3)

where di = pri /∥p
r
i ∥2 and ∥.∥2 denotes the usual Euclidean norm.

By means of Eq. (3), eyeball position E can thus be determined in a
non-iterative way.

3.4 Gaze estimation
After eyeball position, E, is estimated according to the method de-
tailed in the last section, gaze estimation for additional eye images
is performed in the following way. Given a fitted pupil contour,
ℓi , an unprojected circle vir is obtained for an arbitrary but fixed
choice of r . Disambiguation is achieved by the criterion given in
Eq. (1). Intersecting the line defined by the origin and pri with a
sphere at position E and radius R = dp , provides an estimate for the
center point of the pupil in 3D. The optical axis is given by the nor-
malized direction from E to the intersection point. Pupil radius can
be estimated by scaling the initial choice of r appropriately. Note,
this method is implicitly contained in the initialization procedure
by [Świrski and Dodgson 2013].

3.5 Correcting for refraction effects
As detailed in Sections 3.3 and 3.4, our proposed gaze-estimation
approach proceeds in two stages. It has been shown previously
[Dierkes et al. 2018] that by disregarding the effects of corneal
refraction, both stages incur systematic errors. In this section, we
present a method for estimating two empirical correction functions,
Reye and Rpupil. These correction functions provide a fast and
simple way to account for corneal refraction effects.

We will first detail our method with respect to correcting eyeball-
position estimates. To this end, assume a set of eye images is given,
with ground-truth eyeball position E = (x ,y, z). The estimate of E
according to our proposed method in this section will be denoted
by Ê = (x̂ , ŷ, ẑ). While exhibiting systematic deviations from it, Ê
depends on E in a bijective manner. We are seeking a correction
function Reye with the property that

Reye(Ê,nref ) = E, (4)

for all eyeball positions E. Note, in Eq. (4) we have included nref as
an independent parameter on the left hand side, as our correction
function needs to be able to account for variations in the effective
refractive index of the cornea across subjects. Due to the nonlinear
nature of corneal refraction, the derivation of an exact closed-form
representation of Reye is challenging. Instead, we estimate Reye in
the following manner.

After fixing E at a position randomly drawn from a range of
practically relevant eyeball positions, here x ,y ∈ [−5mm, 5mm]

and z ∈ [25mm, 45mm], we generated N = 25 synthetic eye im-
ages for a fixed value of nref randomly drawn from [1.1, 1.4], with
gaze angles ϕ and θ randomly chosen from a uniform distribution
between −50◦ and 50◦, and with pupil radii randomly chosen from a
uniform distribution between 1mm and 4mm. Pupil contours were
extracted from all images using Pupil Capture, the open source
software developed by Pupil Labs [Kassner et al. 2014]. Based on
the extracted contours, we obtained an eyeball position estimate Ê
using the method detailed in Section 3.3. Repeating this procedure
M = 1000 times resulted in a list of corresponding parameter tuples:

(x̂i , ŷi , ẑi ,n
i
ref ) ↔ (xi ,yi , zi ) for i = 1, . . . ,M .

We then estimated Reye in a least-squares sense by means of a mul-
tivariate polynomial regression of degree n = 5. More specifically,
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we defined

Reye(x̂ , ŷ, ẑ,nref ) :=
∑

0≤j,k,l,m, j+k+l+m≤5
pj,k,l,mx̂ jŷk ẑlnmref , (5)

for a set of parameters P = {pj,k,l,m : 0 ≤ j,k, l ,m, j+k+l+m ≤ 5}
which was minimizing the following sum of residuals:

2
M

∑
i



Reye(x̂i , ŷi , ẑi ,n
i
ref ) − (xi ,yi , zi )



2 . (6)

We now turn to the estimation of the correction function Rpupil,
which is used to correct gaze-angle and pupil-radius estimates.
More specifically, this requires the estimation of a function Rpupil,
such that

Rpupil(E, ĝvx , ĝvy , ĝvz , r̂ ,nref ) = (gvx , gvy , gvz , r ),

for all eyeball positions E, gaze vectors gv, and pupil radii, r , where
gaze-vector estimates are denoted by ĝv and estimated pupil radii
are denoted by r̂ .

To this end, we fixed E and nref in a manner as detailed in the
derivation of Reye. We then generated synthetic eye images on
a grid of 20x20 images, with gaze vectors corresponding to gaze
angles ϕ and θ evenly spanning a field of view of −50◦ and 50◦, and
pupil radii randomly chosen from a uniform distribution between
1mm and 4mm. For each image, we determined a gaze-vector, ĝv,
and pupil-radius estimate, r̂ , according to the method detailed in
Section 3.4. Repeating this procedure M=1000 times resulted in a
list of corresponding parameter tuples:

(E, ĝvix , ĝv
i
y , ĝv

i
z , r̂i ,n

i
ref ) ↔ (gvix , gv

i
y , gv

i
z , r )

for i = 1, . . . , 400 · M . Given these data, we estimated Rpupil in
a least-squares sense by means of a multivariate polynomial re-
gression of degree n = 5, i.e. with a functional form and residuals
being defined analogously to the ones given in Eq. (5) and Eq. (6),
respectively.

In summary, given the two correction functions Reye and Rpupil,
we propose the following two-stage gaze-estimation method. Based
on a set of eye images, an uncorrected eyeball position Ê is deter-
mined according to Section 3.3, which after choosing an appropriate
value for nref , can be corrected to a final estimate E = Reye(Ê,nref ).
For subsequent frames, initial uncorrected estimates д̂v and r̂ for
gaze vector and pupil radius, respectively, are generated first accord-
ing to Section 3.4. By means of the correction function Rpupil, final
estimates (gv, r ) = Rpupil(E, д̂v, r̂ ,nref ) can then be determined.

4 EVALUATION
In this section, we report on a quantitative evaluation of the ap-
proach proposed in this work. Using both synthetic and real eye
images, we present results gauging its performance with respect to
eyeball-position, gaze-angle, and pupil-size estimation. In particular,
we assess the effect of pupil detection noise, which is unavoidable
for real eye imagery, and demonstrate the beneficial effect of tem-
porally integrating pupil shape information.

4.1 Eyeball-position estimates
We first analyzed whether our approach is able to correctly ex-
tract eyeball positions from sets of synthetic eye images. To this

0.0 0.5 1.0
x-position

of eyeball [mm]

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 x
-p

os
iti

on
of

 e
ye

ba
ll 

[m
m

]

Ground truth
wirski et al.

Ours,
refraction ignored
Ours,
refraction corrected

0.0 1.0 2.0
y-position

of eyeball [mm]

0.0

0.5

1.0

1.5

2.0

Es
tim

at
ed

 y
-p

os
iti

on
of

 e
ye

ba
ll 

[m
m

]

36.0 38.0 40.0
z-position

of eyeball [mm]

30.0

32.5

35.0

37.5

40.0

Es
tim

at
ed

 z-
po

sit
io

n
of

 e
ye

ba
ll 

[m
m

]

A B

C

Figure 3: Estimates of eyeball position. (A-C) Estimated x-,y-,
and z-position of the eyeball as a function of the respective
ground truth value.

end, while keeping eyeball position fixed at a position E, we gener-
ated sets of N=25 synthetic eye images with gaze angles ϕ and
θ randomly chosen from a uniform distribution between −50◦
and 50◦. The pupil radius, r , for each image was chosen randomly
from a uniform distribution between 1mm and 4mm. To mimic
real eye images as close as possible, we set the refractive index of
the cornea to nref = 1.3375 [Guestrin and Eizenman 2006]. Based
on the extracted contours, we then optimized both Świrski’s and
our model. To the latter we furthermore applied our refraction
correction function Reye. We repeated the above procedure for a
series of eyeball positions E, covering a straight line connecting
E0 = (0mm, 0mm, 35mm) and E1 = (1mm, 2mm, 35mm). The
results of this analysis are shown in Figure 3.

As can be seen from the figure, Świrksi’s and our model without
correction lead to the same results in all cases (yellow and dashed
green lines). As was shown previously [Dierkes et al. 2018], both
approaches exhibit systematic deviations from ground truth values,
as an effect of not taking into account corneal refraction. Applying
our refraction correction function Reye, over the whole range of
tested eyeball positions provides eyeball position estimates which
are in very close agreement with ground truth values (dotted blue
and red lines).

As a uniform distribution of pupil radii in a real-world setting
cannot always be ensured, we next investigated the dependence of
eyeball position estimates on pupil radius. To this end, we chose
an eyeball position E = (0mm, 0mm, z), varying z between 35mm
and 40mm, and chose a pupil radius r , varying r between 1mm
and 4mm. For each choice of E and r , we generated N=25 synthetic
eye images with nref = 1.3375 and gaze angles ϕ and θ randomly
chosen from a uniform distribution between−50◦ and 50◦. Based on
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Figure 4: Estimates of eyeball position for fixed pupil radius.
(A-C) Estimated x-,y-, and z-position of the eyeball as a func-
tion of ground truth value. Legend in (A) and lower right.

the extracted pupil contours, we optimized our model and applied
the correction function Reye.

As can be seen from Figure 4, both the uncorrected and corrected
eyeball-position estimates depend on pupil radius in a nonlinear
fashion. In all cases, however, the observed variation is small, i.e.
less than 2.5% as compared to the respective value observed for
r = 4mm. More importantly, while the uncorrected estimates show
systematic deviations from ground truth, the corrected estimates
in all cases are close to ground truth values.

In summary, the results presented in this section attest that our
approach successfully predicts eyeball positions from synthetic
images. In particular, it successfully accounts for the effects of
corneal refraction.

4.2 Angular gaze-estimation accuracy
Next, we quantified gaze-estimation accuracy. To this end, we
clamped the eyeball at E = (0mm, 0mm, 35mm), i.e. at a posi-
tion frontal to the eye camera. We chose an effective refractive
index of the cornea, nref , varying its value between 1.1 to 1.4. For
each setting, we generated N=25 synthetic images, with gaze an-
gles ϕ and θ being randomly chosen from a uniformly distribution
between −50◦ and 50◦. Pupil radius r was randomly chosen from
a uniform distribution between 1mm and 4mm. Based on the ex-
tracted contours, we performed the non-iterative optimization of
our model and applied the refraction correction function Reye. In a
second step, we then generated synthetic eye images, varying gaze
angle, as measured with respect to the negative z-axis, from 0◦ to
60◦ degrees and fixed the pupil radius at r = 2.5mm. For all images,
we predicted the gaze angle and applied our refraction-correction
function Rpupil. In Figure 5A, we report the results of this analysis.
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Figure 5: Accuracy of gaze-angle and pupil-radius estimates.
(A) Uncorrected and corrected gaze-angle estimates. (B) Un-
corrected and corrected pupil-size estimates. In both panels,
estimates are shown as a function of the respective ground
truth value for choices of the corneal refractive index, nref .

For 0◦ gaze angle and all choices ofnref , all predictions (corrected
and uncorrected) align with the ground truth value. For increasing
gaze angle, however, uncorrected predictions exhibit a systematic
error, which increases monotonically with gaze angle and refractive
index. After correction, all predictions coincide with ground truth
values up to line width.

These results show, that our approach faithfully captures the
effect of refraction on gaze-angle estimates over a wide range of
refractive indices.

4.3 Pupil-radius estimates
Next, we evaluated the accuracy of our approach with respect to
pupil-radius estimates. To this end, we performed an analogous
analysis to the one discussed in the previous section. This time,
however, we obtained pupil radius estimates for all images. Our
findings are summarized in Figure 5B.

For all choices of the corneal refractive index, nref , and all gaze
angles tested, the uncorrected pupil-radius estimates are smaller
than the ground truth value. This systematic error is maximal (about
25%) when the eye is looking directly at the camera and for the
largest refractive index considered here. Furthermore, as was pre-
viously reported [Dierkes et al. 2018], uncorrected pupil-radius
estimates vary with gaze angle. The observed variation is most
pronounced for the largest refractive index tested. After application
of our correction function Rpupil, however, the obtained estimates
match the ground truth values up to line width.

These result show that our method successfully produces correct
pupil-radius estimates over a wide range of refractive indices.

4.4 Sensitivity to noise in real eye images
So far, we have considered synthetic eye images only. Pupil contours
extracted from such synthetic eye images are perfect within pixel
error and do not contain any noise. In a real-world setting, in
contrast, gaze estimation has to be performed in the presence of
such imperfections. In this section, we first quantify the importance
of accurate eyeball position estimates for gaze estimation in terms
of deterministic sensitivity functions. We then turn towards the
analysis of real eye images and evaluate the performance of our
approach in the presence of pupil contour noise.
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Our method of gaze estimation depends on the prior determi-
nation of eyeball position. Errors in this position estimate directly
translate to errors in subsequent gaze-angle estimates. In order
to quantify the sensitivities χx , χy , and χz of the mean angular
gaze-estimation error to imperfections in the x-, y-, and z-position
of the eyeball, respectively, we performed the following analysis.

We generated synthetic eye images for an eye positioned directly
in front of the camera at E0 = (0mm, 0mm, 35mm) with nref =
1.3375 and pupil radius fixed at r = 2mm. Gaze angles ϕ and θ
were chosen on a grid of 20x20 points, evenly spanning a field of
view of 45◦ horizontally and vertically.

In a next step, we assumed an optimized eye model that was
shifted away from the ground truth value, E0, along one of the
coordinate axis. More specifically, we chose Ei (∆) = E0 + ∆ ∗

®ei , where ∆ ∈ [−1.6mm, 1.6mm], i ∈ x ,y, z, and ®ei denotes the
unit vector along the i-th coordinate axis. For each choice of Ei ,
we calculated corrected gaze-angle estimates for all images and
determined the mean angular gaze-estimation error with respect
to the ground truth.

As can be seen from the Figure 6A, shifts along each coordinate
axis lead to a close to linear increase of the mean angular gaze-
estimation error. Shifts along the x- and y-axis (orange and blue
lines) effect a more pronounced increase as compared to shifts
along the z-axis (green line). Due to symmetry, however, errors due
to shifts along the x- and y-axis are almost identical. Taking the
respective derivatives at∆ = 1mm, we can estimate the sensitivities
χx ≈ χy ≈ 5.80 deg

mm and χz ≈ 1.45 deg
mm . Thus errors in eyeball

position estimates along the x- or y-axis lead to a mean angular
gaze estimation error over the whole field of view that increases at
about 5.80◦ per 1mm shift. In the case of errors along the z-axis,
sensitivity is lower, with the mean gaze estimation error growing
at 1.45◦ per 1mm shift. As a consequence, a necessary condition
for achieving a mean angular gaze estimation error of below 1◦ is
to be able to determine eyeball position with an error of less than
0.17mm for the x- and y-axis and 0.68mm for the z-axis.

We now turn to an analysis of real eye images. To this end, using
the Pupil headset developed by Pupil Labs [Kassner et al. 2014], we
generated recordings for N = 6 subjects each about 1min in length.
In order to mimic the setup of our simulation study, the eye camera
of the headset was adjusted to face the eyeball centrally. Subjects
were asked to evenly gaze in all directions for the full duration of
the recording, thus approximately uniformly sampling their whole
field of view. For each recording, pupil contours were extracted
from all frames. Pupil contours as extracted by Pupil Capture are
associated with a confidence value, C , gauging the overall quality
of the contour and the likelihood of it not being a false detection.
Only frames withC > 0.98were kept, which corresponded to about
1500 frames per subject.

One of the challenges of working with real eye imagery is that
no ground truth value for eyeball position is available. Due to
noise in the extracted pupil contours, eyeball-position estimates
in our approach vary with the exact choice of images that the
optimization is based on. We thus performed a statistical analysis
aimed at elucidating the expected error of our approach.

In Figure 6B, we show the distributions of x-, y-, and z-position
estimates for a single subject, where the optimization was repeated
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Figure 6: Effects of pupil contour noise. (A) Determinis-
tic sensitivity functions. (B) Example densities of eyeball-
position estimates (N = 25). (C) Mean standard deviation
(n=6 subjects) of eyeball-position distributions as a function
of the number of pupil contours, N , used for optimization.
Colored dashed lines indicate thresholds for sub-1-degree
gaze estimation as derived fromA. Gray dashed line denotes
a power law with exponent α = −1/2. (D) Optimization run-
times as a function of the number of pupil contours, N , used
for optimization. Color code for B, C in A.

1000 times based on N = 25 images that were randomly drawn
from the full set of available frames. As can be seen from the figure,
distributions are close to Gaussian and clearly centered around a
mean value. Assuming the mean value to reflect the true position of
the eyeball in the camera coordinate system, the standard deviation
of the respective distributions thus serves as an estimate for the
expected error in eyeball position estimates. For the data shown in
Figure 6B, this corresponds to an error of 0.1mm in x-, of 0.15mm
in y-, and of 0.34mm in z-position.

To investigate whether using more pupil contours leads to a
decrease in these error estimates, we determined the distributions
shown in Figure 6B for choices of N between 10 and 500. We calcu-
lated their standard deviations and averaged them over different
subjects.

The results are shown in Fig. 6C on a log-log-scale. We find
that expected errors in x- and y-position are smaller than expected
errors in z-position for all N . In all cases, errors decay with increas-
ing N according to a power law with an exponent α = −1/2 (see
gray dashed line, which is proportional to 1/

√
N ). Note that the

standard deviation of the sample mean of a normally distributed
random variable follows the same pattern. Our results therefore
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show that increasing the number of pupil contours in the opti-
mization effectively averages out pupil contour noise, leading to
ever decreasing expected errors on eyeball-position estimates. This
demonstrates the positive effect of temporally integrating pupil
contour information over the course of a recording.

Based on sensitivities χx , χy , and χz , and the results shown in
Figure 6C, we can derive an explicit estimate for how many frames
are needed for rendering the expected eyeball-position error low
enough to facilitate a mean angular gaze-estimation error of less
than one degree. We indicate the respective thresholds by colored
dashed lines in 6C. We find that about 100 frames, corresponding
to independent gaze directions, are sufficient to determine eyeball
position with adequate accuracy.

While adding frames helps counteracting the detrimental effects
of pupil contour noise, it comes at the cost of increased optimization
runtimes. To compare the speed of our method with the one by
[Świrski and Dodgson 2013], we measured mean runtimes as a func-
tion of the number of pupil contours, N, used during optimization.
We employed the C++-implementation of the work by [Świrski
and Dodgson 2013] as incorporated in Pupil Capture. Our novel
approach was implemented in Python. Optimizations were run on
a single core of an Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz.
Results are shown in Fig. 6D. For N=100, optimization with our ap-
proach takes about 1.5 ms. Optimization in the Świrski framework
takes about two orders of magnitudes longer.

In summary, we have shown that by combining information
drawn from a number of pupil contours our approach can overcome
the limitations of unavoidable pupil contour noise and is expected
to provide eyeball position estimates with high accuracy.

5 DISCUSSION
In this work, we proposed a fast non-iterative approach to refraction-
aware 3D eye-model fitting and gaze prediction based on pupil
contours alone. Leveraging geometrical insights with regard to the
LeGrand two-sphere eye model, we cast the task of eyeball-position
estimation as a least-squares intersection of lines. We accounted for
systematic errors due to corneal refraction, both in eyeball-position
and gaze and pupil-radius estimates, by means of empirical correc-
tion functions. In a simulation study we verified that our approach
indeed provides accurate estimates for eyeball position, gaze angle,
and pupil radius. Based on the statistical analysis of results obtained
for real eye images, we showed the feasibility of our approach also
in the presence of pupil contour noise. We demonstrated the ben-
eficial effect of integrating pupil contour information over time.
In particular, by combining our results with insights gleaned from
deterministic sensitivity functions, we derived estimates for the
number of independent eye images required to enable gaze esti-
mation with a mean angular gaze-estimation error of one degree.
While bearing similarities with the approach presented by [Świrski
and Dodgson 2013] and [Dierkes et al. 2018], our method constitutes
a considerable conceptual and computational simplification.

A key assumption made throughout this work is that the eye-
ball center is stationary in the camera coordinate system. So-called
head-set slippage, i.e. unavoidable movements of the headset with
respect to the head of the user, renders this assumption only ap-
proximately true. Indeed, headset slippage can occur on timescales

as short as minutes [Sugano and Bulling 2015] and constitutes
a central challenge for head-mounted eye-tracking solutions. A
promising route for mitigating the deteriorating effect of headset
slippage is the continuous real-time update of eyeball position over
the course of a recording. Such updates necessitate the repeated op-
timization of the eye model based on subsets of recent pupil contour
observations. Earlier formulations of the eye-model optimization
procedure, as e.g. presented in [Dierkes et al. 2018; Świrski and
Dodgson 2013], involve time-intensive iterative solving of a non-
linear minimization problem. Our approach, by being amenable
to a fast non-iterative solution, considerably reduces the computa-
tional complexity and cost. It thus opens possibilities for devising
more refined algorithms for detecting and correcting headset slip-
page. We showed that integrating pupil contour information over
time renders eyeball-position estimates more accurate. By inducing
shifts of the eyeball, headset-slippage, however, effectively limits
the maximal integration time. One exciting route of investigation
will be to quantify the time-scales associated with headset-slippage
over a range of different activities. A statistical analysis of eyeball-
position estimates obtained from subsets of the most recent eye
images could then potentially be used to infer the current slippage-
paradigm and inform strategies for real-time eye-model updates.
We plan to explore these ideas in the future.

While we expect our work to facilitate progress in the develop-
ment of glint-free head-mounted eye-tracking solutions, the current
approach also faces certain limitations.

We demonstrated that it can successfully be used for the analysis
of real eye images. The setup of our recordings, however, was highly
controlled. In particular, by instructing subjects to gaze evenly
within their field of view, the gaze-angle distributions obtained in
our study were more uniform than in less controlled situations.
It will be an interesting line of work to generalize the statistical
estimates presented here to more realistic settings.

In this work, we have dealt with gaze estimation in a monocular
setup only. As a consequence, the key metric used was angular
gaze-estimation error as measured in the camera coordinate system.
However, with the increasing pervasiveness of head-mounted dis-
plays in the field of AR/VR, the accurate estimation of gaze points in
3D becomes an increasingly important field of study [Elmadjian et al.
2018]. In particular, the effects of refraction in a binocular setting
aimed at depth estimation have not been systematically explored.
We believe our approach to provide a versatile and computationally
accessible toolkit for addressing this exciting challenge.

6 CONCLUSION
In conclusion, we have presented a novel method for 3D eye model
fitting and gaze estimation in a glint-free setting. Following our
approach, eyeball position can be estimated from pupil contours
alone by means of a least-squares intersection of lines. Systematic
deviations introduced by corneal refraction are accounted for by
means of empirical correction functions. The proposed method thus
blends conceptual simplicity with a level of optical veracity which
is necessary for achieving state-of-the-art gaze-estimation accuracy.
We thus believe that it will serve as an accessible framework for
tackling pressing challenges in the research and development of
head-mounted eye-tracking solutions.
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