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Context-aware computing systems 
aim to proactively help users by 

automatically sensing the context and 
adapting system behavior to address 
users’ needs and expectations. The 
context can comprise personal fac-
tors—such as physical activity, social 
interactions, and the psychophysi-
ological or affective state—as well 
as environmental factors—such as 
location and the surrounding infra-
structure. The problem of infer-
ring and analyzing affective states 
has attracted considerable research 
interests in recent years and has been 
investigated thoroughly in affective 
computing. In contrast, sensing and 

analyzing processes of cognition has 
received relatively little attention, 
despite the fact that such processes 
hold considerable potential for con-
text-aware computing.

When a user interacts with a comput-
ing system, the ability to sense cogni-
tion would let the system identify the 
different aspects of mental information 
processing—such as engagement, cog-
nitive load, memory, knowledge, and 
learning (see Figure 1). If we could mea-
sure these aspects as additional contex-
tual cues in daily life, it would add a 
cognitive dimension to the current 
notion of context, paving the way for 
cognition-aware computing systems.

ChallEngES In CognItIon 
awarEnESS
We define a computing system as cog-
nition aware if it senses and adapts to 
 cognitive aspects of the personal con-
text—the so-called cognitive context,1 

also referred to as covert aspects of the 
user state.2 Cognition awareness allows 
for novel applications, such as ensuring an 
optimal game experience by dynamically 
adjusting game demands according to 
engagement or immersion.3 Other exam-
ples include providing information about 
forgotten people or places by assessing 
the success or failure of memory-recall 
processes,4 or supporting  people during 
safety-critical tasks by monitoring cogni-
tive workload and fatigue.5

Current context-aware systems, 
however, face several challenges in try-
ing to obtain the cognitive context in an 
unobtrusive manner—using, for exam-
ple, sensors attached to the human 
body or placed in the environment. 
First, similar to affective computing, 
the cognitive context often is encoded 
in complex neural dynamics of brain 
activity, and only a few obvious cues 
are accessible by noninvasive measure-
ment techniques. This is in contrast to 
other contextual cues, such as physi-
cal activity, that can readily be sensed 
from body movements using on-body 
inertial sensors. Sensors that are com-
monly used to measure brain activity, 
such as functional magnetic resonance 
imaging (fMRI), require bulky or sen-
sitive equipment that’s not well suited 
or robust enough for mobile daily-life 
recordings.
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Figure 1. Cognition-aware computing systems and interfaces sense and adapt to 
covert aspects of the user state—the so-called cognitive context. The computer 
directly assesses information about the users’ cognitive state without any direct 
communication from the user to the system. This information is used to refine the 
ongoing interaction—for example, through automated adaptation.
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A second challenge relates to the 
experimental methodology used. When 
assessing the cognitive context, specific 
cognitive processes first must be evoked 
and measured reliably in controlled set-
tings and then robustly inferred in com-
plex daily life situations. In addition, 
co-occurring cognitive factors must be 
carefully isolated. This requires a mul-
tidisciplinary approach at the cross-
roads of cognitive sciences, psychology, 
machine learning, and engineering.

Finally, linking subtle cues in sensor 
signals to cognitive processes requires 
domain-specific modeling and inference 

techniques. In the simplest case, this 
would involve combining and adapting 
existing methods from pattern recogni-
tion and machine learning for this new 
problem domain. However, research on 
cognition awareness will also require 
and drive the development of new com-
putational methods geared toward cog-
nitive context evaluation.

PromISIng SolutIonS
Considerable potential for cognition-
aware computing lies in two sensing 
modalities that have long been used 
in other fields but have not been fully 

exploited to infer the cognitive context 
yet—visual behavior and portable elec-
troencephalography (EEG). Human 
visual behavior, measured using mobile 
or stationary eye trackers, has a long his-
tory as a tool in clinical ophthalmology, 
experimental psychology, and human-
computer interaction. Recent advances 
in mobile eye-tracking equipment point 
the way toward unobtrusive systems for 
monitoring and analyzing visual behav-
ior pervasively in everyday life.6 (For 
more information, see the sidebar.)

Similarly, EEG has found signifi-
cant use in active but more recently 

WEaraBlE SEnSIng SolutIonS for VISual BEhaVIor and EEg

head-mounted eye trackers can be distinguished by the 
measurement technique they use. the two most widely used 
techniques today are electrooculography (Eog) and video. 
Eog is an electrode-based technique that measures changes 
in the electrical potential field around the eyes, caused by eye 
movements. Eog is computationally lightweight and can be 
implemented as a real-time, low-power wearable system, but 
it’s sensitive to noise and can only track relative eye movements 
with high temporal resolution.1

Video-based eye trackers are the current standard in research 
and industry because they can provide accurate 2d and 3d 
gaze estimates. they rely on a combination of infrared illumina-
tion of the eye, high-resolution cameras, and computer vision 
techniques for pupil detection and tracking. on the down-
side, video-based eye tracking is computationally expensive 
and  sensitive to ever-changing lighting conditions in outdoor 
 environments. 

although commercial head-mounted eye trackers are 
still expensive and therefore only used by specialized user 
groups, efforts to make eye tracking accessible to the gen-
eral public led to the development of open source alterna-
tives, such as the Pupil open source eye-tracking platform 
(see figure a1).2

Electroencephalography (EEg) systems measure changes 
in electrical activity at the scalp. typically, 32 to 256 elec-
trodes are connected to the skin using a conductive gel to 
reduce impedance. Setting up a standard EEg cap is time- 
consuming, the cap is cumbersome to wear, and users have 
to deal with gel in their hair. these are the main reasons 
why passive BCIs haven’t yet appeared in many real-world 
 applications. recent advances in dry electrode EEg systems 
can  measure brain activity without using gel. although 
they’re still cumbersome to wear, the set-up time is only 
 approximately five minutes. 

first high-density wearable EEg headsets are available now 
(see figure a2) that will pave the way for assessing the cognitive 
context with passive BCI systems.3 In addition to usable acquisi-
tion hardware, passive BCIs also rely on software to extract 
features representing correlates of (covert) aspects of cognition. 
Several open source toolboxes, such as BCIlaB,4 are available 
for this task.
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Figure A. Head-mounted sensing modalities. The first is an 
eye-tracker the second an EEG system: (1) The Pupil open 
source platform for pervasive eye tracking and mobile 
gaze-based interaction by Pupil Labs in Berlin, and (2) the 
wearable 64 channel dry electrode EEG head cap from 
Cognionics in San Diego.
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also  passive brain-computer interfaces 
(BCI)7 and has become an important 
tool for real-time analysis of brain 
activity. The unique characteristic of 
visual behavior and passive BCIs is 
that both are closely linked to human 
cognition and thus potentially provide 
rich information about the cognitive 
context. For this reason, both modali-
ties are often called a window into 
the mind.8 Previous works by us and 
other members of the research com-
munity suggest that visual behavior 
and passive BCIs might hold the key 
to accessing at least part of the cog-
nitive context, making it accessible to 
cognition-aware computing.

Visual Behavior Analysis
In experimental psychology, a large 
body of work identifies eye movement 
characteristics that are linked to cog-
nitive processes. For example, studies 
show that our eyes follow certain paths 
depending on what task we perform or 
have in mind9 and that eye movements 
correlate with the type of memory access 
required to perform these tasks.10 Other 
findings suggest that eye movements are 
good measures of perceptual learning 
and experience,11 visual search,12 and 
fatigue.13 Significant differences in eye 
movement patterns were also found for 
people looking at familiar versus unfa-
miliar faces.14

In pervasive computing, researchers 
only recently identified visual behav-
ior as a contextual cue and started to 
analyze eye activity—that is, eye move-
ments during daily tasks in natural 
environments, in a similar fashion as 
physical activity. Specifically, research 
conducted by us and colleagues 
showed that a variety of visual and 
nonvisual activities can be spotted and 
recognized automatically from visual 
behavior, such as office activities,15 
concentrated work,16 or reading.17 
All of these findings demonstrate the 
significant information content avail-
able in eye movements for assessing 
user context. In contrast, analysis and 
inference of the cognitive context still 

remains relatively unexplored. Work 
in this area has thus far focused on 
inferring visual memory recall,4 inten-
tion,18 or language expertise19 from 
eye movements.

Passive Brain-Computer Interfaces
Since their introduction, passive BCIs 
have been used to track changes in 
users’ brain activity. For example, a 
70 percent detection rate has been 
achieved for detecting the intention 
to press a key, even before the onset of 
any muscular activity. Similarly, other 
work has shown that bluffing during 
a dice game could be detected with 
an accuracy of 80 percent (a review 
of these studies appears elsewhere7). 
Previous work also investigated users’ 
perception of errors during interac-
tion with a technical system.20 Both 
user errors as well as system errors—
for example, if the system didn’t 
properly adapt to the user—could be 
detected and corrected with a reliabil-
ity of up to 80 percent for users errors 
and 85 percent for system errors. 
Such error detections could be used 
for implicit control—that is, interac-
tion with a computing system without 
explicit input from the user. Instead, 
such a system could monitor the user 
during the interaction and use this 
information to automatically adapt 
its behavior to the user’s goals and 
strategies.21

Unity is Strength
What makes both modalities even more 
promising for cognitive context evalu-
ation is that contextual information 
obtained from one modality comple-
ments that derived from the other. 
Visual behavior reflects the cognitive 
processes that elicited it and can there-
fore be seen as the external manifesta-
tion of the cognitive context. Therefore, 
by analyzing visual behavior, changes in 
cognitive context can be inferred.6 Pas-
sive BCIs complement the information 
obtained from visual behavior analysis 
by providing insights into the internal 
manifestation of the cognitive context, 

which could be assessed by measuring 
brain activity.2

One recent work demonstrated 
this beneficial combination of visual 
behavior analysis and passive BCI. 
In gaze-based interaction, items are 
often selected by dwelling on them for 
a certain amount of time. This overt 
attention can be derived directly from 
gaze behavior but suffers from the so-
called Midas Touch problem—erro-
neous selections because users also 
dwell on other parts of the screen 
and with different intents. Previously 
blinks or eye gestures were used to 
indicate selections, in an attempt to 
resolve the Midas touch problem. 
Janna Protzak and her colleagues pre-
sented a different solution using cog-
nitive context. They directly inferred 
the selection intent from brain activ-
ity to confirm dwell-time-based gaze 
selection.22 This study is thus a first 
proof of principle that a combina-
tion of gaze analysis and passive BCI 
provides better insight into cognitive 
context.

T hese initial studies demonstrate 
the  considerable potential of 

analyzing the cognitive context for 
context-aware computing. Eye move-
ment analysis and passive BCIs hold 
great promise for investigating the 
cognitive context of a person in daily 
life situations. We strongly believe 
that a combination of both measure-
ment techniques will pave the way 
for a new genre of wearable and per-
vasive computing systems that use 
the cognitive dimension for context 
awareness.

Despite their significant potential, 
developing cognition-aware systems 
requires addressing a number of tech-
nical challenges with respect to sys-
tem design and behavior. How does a 
cognition-aware environment or inter-
action with cognition-aware objects 
need to be designed and implemented? 
Which feedback is most appropriate 
to react to changes in the cognitive 
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 context of a person? Answers to these 
and similar questions will open up new 
areas of research, particularly in HCI 
and design. 

In addition to the technical chal-
lenges, the rise of cognition-aware 
systems will also lead to ethical and 
privacy issues. How will cognition-
aware computing influence our daily 
lives? What are the broader implica-
tions on society and politics if peo-
ple use systems that can “read their 
mind”? Should access to the cogni-
tive context be restricted? Or should 
it be shared—for example, to help 
autistic people or people from dif-
ferent cultural backgrounds? Either 
way, extending the information base 
accessible by computer systems to 
include cognitive context will have a 
significant impact on future human-
computer interaction. 

REFEREnCES

 1. A. Bulling, D. Roggen and G. Tröster, 
“What’s in the Eyes for Context-Aware-
ness?” IEEE Pervasive Computing, vol. 
10, no. 2, 2011, pp. 48–57.

 2. T.O. Zander and S. Jatzev, “Context-
Aware Brain–Computer Interfaces: 
Exploring the Information Space of 
User, Technical System and Environ-
ment,” J. Neural Eng., vol. 9, no. 1, 
2012, no. 016003.

 3. A. Nijholt, and D. Tan, “Playing with 
your Brain: Brain-Computer Interfaces 
and Games,” Proc. Int’l Conf. Advances 
in Computer Entertainment Technology 
(ACE 07), 2007, pp. 305–306.

 4. A. Bulling and D. Roggen, “Recogni-
tion of Visual Memory Recall Processes 
Using Eye Movement Analysis,” Proc. 
Ubiquitous Computing (UbiComp 11), 
2011, pp. 455–464.

 5. C.A. Kothe and S. Makeig, “Estimation 
of Task Workload from EEG Data: New 
and Current Tools and Perspectives,” 
Proc. Eng. Medicine and Biology Soci-
ety (EMBC 11), 2011, pp. 6547–6551.

 6. A. Bulling and H. Gellersen, “Toward 
Mobile Eye-Based Human-Computer 
Interaction,” IEEE Pervasive Comput-
ing, vol. 9, no. 4, 2010, pp. 8–12.

 7. T.O. Zander and C. Kothe, “Towards 
Passive Brain–Computer Interfaces: 

Applying Brain–Computer Interface 
Technology to Human–Machine Sys-
tems in General,” J. Neural Eng., vol. 8, 
no. 2, 2011, no. 025005.

 8. B.M. Velichkovsky and J.P. Hansen, 
“New Technological Windows into 
Mind: There Is More in Eyes and Brains 
for Human-Computer Interaction,” 
Proc. SIGCHI Conf. Human Factors in 
Computing Systems (CHI 96), 1996,  
pp. 496–503.

 9. M.F. Land, “Eye Movements and the 
Control of Actions in Everyday Life,” 
Progress in Retinal and Eye Research, 
vol. 25, no. 3, 2006, pp. 296–324.

 10. D. Melcher and E. Kowler, “Visual 
Scene Memory and the Guidance of 
Saccadic Eye Movements,” Vision 
Research, vol. 41, nos. 25–26, 2001,  
pp. 3597–3611.

 11. M.M. Chun, “Contextual Cueing of 
Visual Attention,” Trends in Cognitive 
Sciences, vol. 4, no. 5, 2000,  
pp. 170–178.

 12. S.P. Liversedge and J.M. Findlay, “Sac-
cadic Eye Movements and Cognition,” 
Trends in Cognitive Sciences, vol. 4,  
no. 1, 2000, pp. 6–14.

 13. R. Schleicher et al., “Blinks and 
 Saccades as Indicators of Fatigue in 
Sleepiness Warnings: Looking Tired?” 
Ergonomics, vol. 51, no. 7, 2008,  
pp. 982–1010.

 14. J.J. Heisz and D.I. Shore, “More Effi-
cient Scanning for Familiar Faces,” J. 
Vision, vol. 8, no. 1, 2008, pp. 1–10.

 15. A. Bulling et al., “Eye Movement 
Analysis for Activity Recognition Using 
Electrooculography,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 
vol. 33, no. 4, 2011, pp. 741–753.

 16. B. Tessendorf et al., “Recognition of 
Hearing Needs from Body and Eye 
Movements to Improve Hearing Instru-
ments,” Proc. Pervasive 2011, 2011,  
pp. 314–331.

 17. K. Kunze et al., “The Wordometer—
Estimating the Number of Words Read 
Using Document Image Retrieval and 
Mobile Eye Tracking,” Proc. 12th Int’l 
Conf. Document Analysis and Recogni-
tion (ICDAR 13), 2013, pp. 25–29.

 18. R. Bednarik, H. Vrzakova, and M. Hra-
dis, “What Do You Want to Do Next: A 
Novel Approach for Intent Prediction 
in Gaze-Based Interaction,” Proc. Symp. 
Eye Tracking Research and Applications 
(ETRA 12), 2012, pp. 83–90.

 19. P. Martínez-Gómez and A. Aizawa, 
“Recognition of Understanding Level 
and Language Skill Using Measure-
ments of Reading Behavior,” Proc. 19th 
Int’l Conf. Intelligent User Interfaces 
(IUI 14), 2014, pp. 95–104.

 20. P. Ferrez and J.D.R. Millán, “You Are 
Wrong! Automatic Detection of Interac-
tion Errors from Brain Waves,” Proc. 
19th Int’l Joint Conf. Artificial Intelli-
gence (IJCAI 05), 2005, pp. 1413–1418.

 21. T.O. Zander et al., “Towards BCI-
Based Implicit Control in Human–
Computer Interaction,” Advances in 
Physiological Computing, Springer, 
2014, pp. 67–90.

 22. J. Protzak, K. Ihme, and T.O. Zander, 
“A Passive Brain-Computer Interface 
for Supporting Gaze-Based Human-
Machine Interaction,” Proc. 7th Int’l 
Conf. Universal Access in Human-
Computer Interaction: Design Meth-
ods, Tools, and Interaction Techniques 
for eInclusion (UAHCI/HCII 13), 2013, 
pp. 662–671.

andreas Bulling is head of 

the Perceptual user Interfaces 

group at the Max Planck 

Institute for Informatics and 

the Cluster of Excellence on 

Multimodal Computing and 

Interaction at Saarland university, germany. Con-

tact him at bulling@mpi-inf.mpg.de.

thorsten o. Zander is 

a senior postdoctoral re -

searcher at the technical 

university of Berlin, where 

he leads the team PhyPa. 

Since 2009, he has also been 

a research affiliate at the Swartz Center for Compu-

tational neuroscience at the university of California 

San diego. Contact him at tzander@gmail.com.

PC-13-03-wearables.indd   83 20/06/14   1:27 PM


